The ability to recognize individual animals has substantially increased our knowledge of the biology and behaviour of many taxa. However, not all species lend themselves to this approach, either because of insufficient phenotypic variation or because tag attachment is not feasible. The use of genetic markers ('tags') represents a viable alternative to traditional methods of individual recognition, as they are permanent and exist in all individuals. We tested the use of genetic markers as the primary means of identifying individuals in a study of humpback whales in the North Atlantic Ocean. Analysis of six microsatellite loci among 3,060 skin samples collected throughout this ocean allowed the unequivocal identification of individuals. Analysis of 692 'recaptures', identified by their genotype, revealed individual local and migratory movements of up to 10,000 km, limited exchange among summer feeding grounds, and mixing in winter breeding areas, and also allowed the first estimates of animal abundance based solely on genotypic data. Our study demonstrates that genetic tagging is not only feasible, but generates data (for example, on sex) that can be valuable when interpreting the results of tagging experiments.
Abstract. Direct development in benthic marine invertebrates is usually associated with narrow geographical range, low rates of colonization, and low levels of gene flow. Paradoxically, the small brittle star Amphipholis squamata broods its larvae to a crawl-away juvenile stage, yet has a cosmopolitan distribution. Using sequence and restrictionfragment-length-polymorphisms (RFLP) analyses of nuclear and mitochondrial DNA from 16 coastal populations throughout New Zealand, we tested whether the species is indeed a poor disperser, as may be expected from its brooding habit. We predicted that local and regional populations would be genetically structured according to isolation by distance. We also suspected that this ubiquitous ''species'' is composed of a variety of cryptic taxa in different geographic areas, as has been discovered in an increasing number of marine invertebrates. We found evidence of four genetically divergent and reproductively isolated lineages that can exist in syntopy. Lineages vary in abundance, haplotype diversity, and geographic distribution. The partitioning of genetic variation within the most common lineage, as well as the geographic distribution of the four lineages, suggest a north/south split. This pattern is consistent with known New Zealand marine biogeographic zones and appears to be linked to the regime of oceanic circulation, which is characterized by subtropical, southward-moving water masses in the north, and sub-Antarctic, northward-moving water in the south. We conclude that the dispersal ability of A. squamata is regionally restricted but with sporadic long-distance dispersal, which serves to increase local genetic variation. Our results support the idea that dispersal occurs through passive transport by drifting or rafting on macroalgae, which A. squamata commonly inhabits, and emphasize that poor dispersal ability is not necessarily a corollary of direct development.
Approximately three million years ago the Isthmus of Panama formed an impenetrable land barrier between the tropical eastern Paci® c Ocean and the tropical western Atlantic Ocean. Since this time, isolated geminate species have evolved from once contiguous populations, either side of the barrier. One such organism whose distribution is divided by the Isthmus is the tropical brittlestar Ophiactis savignyi, once suggested to be the most common brittlestar in the world. Rather than showing a genetic pattern consistent with a history of isolation, we show that this species has recently dispersed between the Paci® c Ocean and the western Atlantic Ocean. This conclusion is based upon a phylogenetic analysis using sequences of the COI mitochondrial DNA gene from these populations. Identical haplotypes between oceans, and a genetic signature of population expansion, provide compelling evidence that the western Atlantic contains at least one cluster of haplotypes recently derived from the Indo-Paci® c. Inadvertent human-aided translocation of individuals, presumably in ballast water or fouling communities, is strongly implicated as a mechanism for dispersal between oceans. We believe that cryptic marine invasions are likely to be common and our awareness of them will rapidly increase as systematic and phylogeographic knowledge of marine taxa grow.
The brittle star Amphipholis squamata is paradoxical in that it lacks an obvious dispersive phase yet has a world-wide distribution. Although individuals from distant populations are morphologically similar, a recent phylogenetic analysis found multiple clades separated by large genetic divergences. These clades were not phylogeographically structured and genetic divergences within populations were typically as high as those amongst populations. The recent suggestion that the sympatric colour varieties 'orange', 'dark brown', 'beige', 'black' and 'grey' represent sibling species, led us to test whether colour variety and phylogeny were congruent. Genetic distances among sequences of the mitochondrial gene 16S rRNA from the colour varieties were surprisingly high (up to 13% uncorrected distance) and phylogenetic analyses using maximum parsimony, maximum likelihood and neighbour joining gave well supported, congruent phylogenies. However, the clades were not consistent with colour variety. When clades were constrained to make colour varieties monophyletic, tree scores were always significantly worse. We conclude from the results of this study that colour varieties do not represent distinct phylogenetic lineages. We discuss the implications of our results in the light of the possibility of clonality or self-fertilization in this species.KEY WORDS: Cryptic species · Phylogeny · 16S mtDNA · Bioluminescence · Speciation · Colour morphs Resale or republication not permitted without written consent of the publisher
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.