A cost-effective optical sensor for continuous in-situ monitoring of turbidity and suspended particulate matter concentration (SPM), with a production cost in raw materials less than 20 €, is presented for marine or fluvial applications. The sensor uses an infrared LED and three photodetectors with three different positions related to the light source—135º, 90º and 0º—resulting in three different types of light detection: backscattering, nephelometry and transmitted light, respectively. This design allows monitoring in any type of environment, offering a wide dynamic range and accuracy for low and high turbidity or SPM values. An ultraviolet emitter–receiver pair is also used to differentiate organic and inorganic matter through the differences in absorption at different wavelengths. The optical transducers are built in a watertight structure with a radial configuration where a printed circuit board with the electronic signal coupling is assembled. An in-lab calibration of the sensor was made to establish a relation between suspended particulate matter (SPM) or the turbidity (NTU) to the photodetectors’ electrical output value in Volts. Two different sizes of seashore sand were used (180 µm and 350 µm) to evaluate the particle size susceptibility. The sensor was tested in a fluvial environment to evaluate SPM change during sediment transport caused by rain, and a real test of 22 days continuous in-situ monitoring was realized to evaluate its performance in a tidal area. The monitoring results were analysed, showing the SPM change during tidal cycles as well as the influence of the external light and biofouling problems.
Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height) exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component) and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes) and response to increased disturbance (in eroding dunes) between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate) and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can provide insights on the relation between dune vegetation, environmental filters and ecosystem processes. A combination of cost-efficient indicators from dune topography and vegetation is thus suggested as a promising approach to survey, forecast and monitor changes in coastal dune ecosystems.
Nomenclature Castroviejo (1986Castroviejo ( -2013 for published volumes, Franco (1984) and Franco & Afonso (1998) for other groups, except Agrostis (Romero Garc ıa et al. 1988) Abbreviations DSM = digital surface model; EU = European Union; GCP = ground control points; GPS = differential global positioning system; UAV = unmanned aerial vehicle; RF = random forest Abstract Question: Can very high-resolution colour orthophotography and digital surface models (DSMs) from an unmanned aerial vehicle (UAV) be effectively used for assessment of habitat extent and condition in fine-scale disturbancedependent mosaics? Location: Serra de Arga mountain range, a Natura 2000 protected site in the NW region of Portugal where drastic changes in pastoral activities have occurred over recent decades.Methods: An UAV platform was used to collect very high-resolution (6 cm) images and to produce a DSM (10 cm). From these data, several features were extracted related to colour, band ratios, as well as texture features calculated from colour imagery and surface elevation. Based on a systematic sampling design, field data were collected for both training and validation of a supervised classifier. Extracted features and ground truth training data were combined to calibrate a pixel-based Random forest classifier, with the purpose of devising a habitat map for the entire study area. Map validation was performed to assess classification accuracy, and feature importance metrics were calculated.Results: Validation results revealed good mean overall accuracy (0.89), with some performance decrease in situations of high interspersion of habitat types. The priority habitat type 6230* (Nardus grasslands), defining the vegetation matrix of the test site, obtained 0.96 and 0.91, considering, respectively, producer and user accuracy. In turn, priority habitat type 4020* (Atlantic wet heathlands) recorded 0.68 and 0.77. The obtained habitat map allowed measurement of the extent, description of the spatial arrangement and provided an indication of the conservation condition of target habitat types. Test results regarding the discrimination ability of different features highlighted the importance of surface elevation textures derived from the DSM, followed by band ratios textures and other more complex texture features calculated from colour imagery.Conclusions: Overall, the developed methodology showed promising results for assessing the extent and condition of habitats of high conservation priority in fine-scale, dynamic vegetation mosaics. Future advances in the use of UAV platforms may play an important role in monitoring protected sites and fulfil legal reporting obligations of EU member states, while reducing the costs associated with intensive in-field assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.