Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from Ϸ0.2 to 2 g⅐m ؊2 ⅐yr ؊1 . We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.decomposition ͉ global change ͉ litter peat ͉ CO2 P eatlands cover 2-3% of the land's surface, store approximately one-third of all soil carbon (C) (390-455 Pg), and currently act as sinks for atmospheric C (1, 2). The ability of peatlands to sequester atmospheric C resides in the long-term accumulation of partially decomposed organic matter (i.e., peat). Indeed, acidic water conditions, low soil temperature, frequent waterlogging, and low nutrient quality of plant litter impair decomposition of plant litter, favoring its accumulation (3). In peatlands exclusively fed by atmospheric deposition (i.e., bogs) (1), the accumulated peat is dominated by the remnants of the mosses of the genus Sphagnum, which produce a litter poor in nutrients and highly enriched in organochemical compounds such as uronic acids (4) and polyphenols (5) with a strong inhibitory effect on microbial activity and vascular plants (3). As such, Sphagnum plants form the bulk of living and dead biomass in bog ecosystems (3).Because of the strict dependence of bogs on atmospheric deposition as a source of nutrients (1), the increasing availability of biologically reactive nitrogen (N) from industrial and agricultural activities (6) could potentially alter the chemical quality of plant litter with consequent effects on the amount of C released during litter decomposition. Accordingly, an understanding of the mechanisms of bog soil C response to changing N availability is essential for assessing the capa...
Summary• We studied the effects of increasing levels of atmospheric nitrogen (N) deposition on nutrient limitation of ombrotrophic Sphagnum plants.• Fifteen mires in 11 European countries were selected across a natural gradient of bulk atmospheric N deposition from 0.1 to 2 g/m 2 year − 1 . Nutritional constraints were assessed based on nutrient ratios of N, phosphorus (P), and potassium (K) in Sphagnum plants collected in hummocks (i.e. relatively drier microhabitats) and in lawns (i.e. relatively wetter microhabitats).• Nutrient ratios in Sphagnum plants increased steeply at low atmospheric N input, but above a threshold of N deposition of c . 1 g/m 2 year − 1 the N : P and N : K ratios tended to saturation. Increasing atmospheric N deposition was also accompanied by a reduced retention of Ca and Mg in Sphagnum plants and a decreased stem volumetric density in hummock Sphagnum plants.• We suggest a critical load of N deposition in Europe of 1 g/m 2 year − 1 above which Sphagnum plants change from being N-limited to be K + P colimited, at N : P > 30 and N : K > 3.
Summary• Peatlands in the northern hemisphere have accumulated more atmospheric carbon (C) during the Holocene than any other terrestrial ecosystem, making peatlands long-term C sinks of global importance. Projected increases in nitrogen (N) deposition and temperature make future accumulation rates uncertain.• Here, we assessed the impact of N deposition on peatland C sequestration potential by investigating the effects of experimental N addition on Sphagnum moss. We employed meta-regressions to the results of 107 field experiments, accounting for sampling dependence in the data.• We found that high N loading (comprising N application rate, experiment duration, background N deposition) depressed Sphagnum production relative to untreated controls. The interactive effects of presence of competitive vascular plants and high tissue N concentrations indicated intensified biotic interactions and altered nutrient stochiometry as mechanisms underlying the detrimental N effects. Importantly, a higher summer temperature (mean for July) and increased *These authors contributed equally to this work.
Alteration of the global nitrogen (N) cycle because of human‐enhanced N fixation is a major concern particularly for those ecosystems that are nutrient poor by nature. Because Sphagnum‐dominated mires are exclusively fed by wet and dry atmospheric deposition, they are assumed to be very sensitive to increased atmospheric N input. We assessed the consequences of increased atmospheric N deposition on total N concentration, N retention ability, and δ15N isotopic signature of Sphagnum plants collected in 16 ombrotrophic mires across 11 European countries. The mires spanned a gradient of atmospheric N deposition from about 0.1 up to about 2 g m−2 yr−1. Mean N concentration in Sphagnum capitula was about 6 mg g−1 in less polluted mires and about 13 mg g−1 in highly N‐polluted mires. The relative difference in N concentration between capitulum and stem decreased with increasing atmospheric N deposition, suggesting a possible metabolic mechanism that reduces excessive N accumulation in the capitulum. Sphagnum plants showed lower rates of N absorption under increasing atmospheric N deposition, indicating N saturation in Sphagnum tissues. The latter probably is related to a shift from N‐limited conditions to limitation by other nutrients. The capacity of the Sphagnum layer to filter atmospheric N deposition decreased exponentially along the depositional gradient resulting in enrichment of the mire pore water with inorganic N forms (i.e., NO3−+NH4+). Sphagnum plants had δ15N signatures ranging from about −8‰ to about −3‰. The isotopic signatures were rather related to the ratio of reduced to oxidized N forms in atmospheric deposition than to total amount of atmospheric N deposition, indicating that δ15N signature of Sphagnum plants can be used as an integrated measure of δ15N signature of atmospheric precipitation. Indeed, mires located in areas characterized by greater emissions of NH3 (i.e., mainly affected by agricultural activities) had Sphagnum plants with a lower δ15N signature compared with mires located in areas dominated by NOx emissions (i.e., mainly affected by industrial activities).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.