An orthogonal approximation for the 8-point discrete cosine transform (DCT) is introduced. The proposed transformation matrix contains only zeros and ones; multiplications and bit-shift operations are absent. Close spectral behavior relative to the DCT was adopted as design criterion. The proposed algorithm is superior to the signed discrete cosine transform. It could also outperform state-of-the-art algorithms in low and high image compression scenarios, exhibiting at the same time a comparable computational complexity.
A low-complexity 8-point orthogonal approximate DCT is introduced. The proposed transform requires no multiplications or bit-shift operations. The derived fast algorithm requires only 14 additions, less than any existing DCT approximation. Moreover, in several image compression scenarios, the proposed transform could outperform the well-known signed DCT, as well as state-of-the-art algorithms.
Images obtained with coherent illumination, as is the case of sonar, ultrasound-B, laser and Synthetic Aperture Radar -SAR, are affected by speckle noise which reduces the ability to extract information from the data. Specialized techniques are required to deal with such imagery, which has been modeled by the G 0 distribution and under which regions with different degrees of roughness and mean brightness can be characterized by two parameters; a third parameter, the number of looks, is related to the overall signal-to-noise ratio. Assessing distances between samples is an important step in image analysis; they provide grounds of the separability and, therefore, of the performance of classification procedures. This work derives and compares eight stochastic distances and assesses the performance of hypothesis tests that employ them and maximum likelihood estimation. We conclude that tests based on the triangular distance have the closest empirical size to the theoretical one, while those based on the arithmetic-geometric distances have the best power. Since the power of tests based on the triangular distance is close to optimum, we conclude that the safest choice is using this distance for hypothesis testing, even when compared with classical distances as Kullback-Leibler and Bhattacharyya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.