Analysis of anchored hybrid enrichment (AHE) data under a variety of analytical parameters for a broadly representative sample of taxa (136 species representing all extant families) recovered a well-resolved and strongly supported tree for the higher phylogeny of Neuropterida that is highly concordant with previous estimates based on DNA sequence data. Important conclusions include: Megaloptera is sister to Neuroptera; Coniopterygidae is sister to all other lacewings; Osmylidae, Nevrorthidae and Sisyridae are recovered as a monophyletic Osmyloidea, and Rhachiberothidae and Berothidae were recovered within a paraphyletic Mantispidae. Contrary to previous studies, Chrysopidae and Hemerobiidae were not recovered as sister families and morphological similarities between larvae of both families supporting this assumption are reinterpreted as symplesiomorphies. Relationships among myrmeleontoid families are similar to recent studies except Ithonidae are placed as sister to Nymphidae. Notably, Ascalaphidae render Myrmeleontidae paraphyletic, again calling into question the status of Ascalaphidae as a separate family. Using statistical binning of partitioned loci based on a branch-length proxy, we found that the diversity of phylogenetic signal across partitions was minimal from the slowest to the fastest evolving loci and varied little over time. Ancestral character-state reconstruction of the sclerotization of the gular region in the larval head found that although it is present in Coleoptera, Raphidioptera and Megaloptera, it is lost early in lacewing evolution and then regained twice as a nonhomologous gula-like sclerite in distantly related clades. Reconstruction of the ancestral larval habitat also indicates that the ancestral neuropteridan larva was aquatic, regardless of the assumed condition (i.e., aquatic or terrestrial) of the outgroup (Coleopterida).
The first phylogenomic analysis of the antlions is presented, based on 325 genes captured using anchored hybrid enrichment. A concatenated matrix including 207 species of Myrmeleontoidea (170 Myrmeleontidae) was analysed under maximum likelihood and Bayesian inference. Both Myrmeleontidae (antlions) and Ascalaphidae (owlflies) were recovered as paraphyletic with respect to each other. The majority of the subfamilies traditionally assigned to both Myrmeleontidae and Ascalaphidae were also recovered as paraphyletic. By contrast, all traditional antlion tribes were recovered as monophyletic (except Brachynemurini), but most subtribes were found to be paraphyletic. When compared with the traditional classification of Myrmeleontidae, our results do not support the current taxonomy. Therefore, based on our phylogenomic results, we propose a new classification for the antlions, which synonymizes Ascalaphidae with Myrmeleontidae and divides the family into four subfamilies (Ascalaphinae, Myrmeleontinae, Dendroleontinae and Nemoleontinae) and 17 tribes. We also highlight the most pressing issues in antlion systematics and indicate taxa that need further taxonomic and phylogenetic attention. Finally, we present a comprehensive table placing all extant genera of antlions and owlflies in our new proposed classification, including details on the number of species, distribution and notes on the likely monophyly of each genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.