SUMMARYThe soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its
ResumoA compactação do solo em áreas agrícolas manejadas em sistema plantio direto tem sido apontada como um problema enfrentado por produtores, em especial nas áreas com solos argilosos. A compactação é causada principalmente pelo tráfego de máquinas, quando não são respeitadas faixas adequadas de umidade do solo. A palha na superfície do solo, por criar uma barreira física entre o pneu das máquinas e o solo, pode ser um fator de minimização da compactação. Assim, o objetivo do estudo foi avaliar o efeito da palha de milheto em superfície na redução da compactação do solo causada pelo rodado de um trator. O experimento constou de quatro tratamentos de quantidade de palha (sem palha, 5, 10 e 15 Mg ha -1 ) e três de manejo da palha (em pé, tombada e fragmentada). Após a passagem do trator determinou-se a resistência à penetração, umidade, densidade e porosidade total do solo na área trafegada. A densidade e porosidade total não foram afetadas pela passagem do tráfego. Nos tratamentos com palha, obteve-se maior umidade e, consequentemente, menor resistência. Entre os tratamentos de manejo da palha não houve diferença para umidade e resistência. Para a mesma umidade do solo, maiores quantidades de palha resultaram em menores valores de resistência à penetração, evidenciando menor compactação.Palavras-chave: plantio direto, resistência do solo, tráfego de máquinas agrícolas.Soil compaction in a Rhodic hapludox soil as influenced by straw management and quantity on surface Abstract Soil compaction in areas under no-tillage has been pointed as a problem faced by farmers, particularly in areas with clay soils. Compaction is mainly caused by machinery traffic when the adequate soil moisture is not respected. Straw on the soil surface, by creating a physical barrier between the wheel and the ground may be a factor to minimize compaction. Therefore, the objective of this study was to evaluate the effect of millet straw on soil surface in reducing compaction caused by the tractor wheels. The experiment consisted of four treatments of straw quantity on surface (without straw and 5, 10 and 15 Mg ha -1 ) and three straw managements (standing up, lying down and fragmented). After the tractor passage, penetration resistance, water content, density and total porosity of soil were evaluated on the area where the wheel passed over. Density and porosity were not affected by wheel traffic. Treatments with straw had higher water content and as a result less resistance. There was no significant difference on resistance and soil moisture among straw management treatments. For an equal soil water content, higher densities of straw resulted in lower penetration resistance, which indicates less compaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.