Stibiogoldfieldite, Cu 12 (Sb 2 Te 2 )S 13 , was approved as a new mineral species from the Mohawk mine, Goldfield mining district, Esmeralda County, Nevada, U.S.A. It occurs as metallic anhedral grains, dark grey in colour. It is associated with quartz, pyrite and an Ag-Bi-(S,Se) phase (holotype material) and with quartz, pyrite, calaverite, bismuthinite, bohdanowiczite, and the Ag-Bi-(S,Se) phase (cotype material). In reflected light, stibiogoldfieldite is isotropic, grey in color, with indistinct brownish shade. Reflectance data for the four COM wavelengths in air are [λ (nm):
Allabogdanite, (Fe,Ni)2P, is the only known natural high-pressure phase reported in the Fe–Ni–P system. The mineral, which was previously described from a single meteorite, the Onello iron, is now discovered in the Santa Catharina and Barbianello nickel-rich ataxites. The occurrence of allabogdanite in Santa Catharina, one of the largest and well-studied meteorites, suggests that this mineral is more common than was believed. The formation of allabogdanite-bearing phosphide assemblages in a given meteorite provides evidence that it experienced peak pressure of at least 8 GPa at a temperature above 800 °C. Since the pressure-temperature stability parameters of allabogdanite fall within the margins of the stishovite (rutile-type SiO2) stability area, the former can be employed as a convenient stishovite-grade indicator of significant impact events experienced by iron and stony-iron meteorites and their parent bodies.
Quartz from La Sassa (Tuscany, Italy) presents a unique luminescence related to intrinsic and extrinsic defects in the crystal lattice due to the growth mechanisms in hydrothermal conditions. The bright fluorescence under the UV lamp was apparent to collectors since the early 1970s, and it entered the literature as a reference case of yellow-luminescent quartz. Early reports present the history of the discovery, the geological context, and preliminary luminescence measurements of the quartz nodules, suggesting various activators as potentially responsible of the peculiar luminescence effects: uranyl groups (UO22+), rare earths (Tb3+, Eu3+, Dy3+, Sm3+, Ce3+) and polycyclic aromatic compounds (PAH). Here, we report a full investigation of the La Sassa material, by a multi-analytical approach encompassing cathodoluminescence optical microscopy (OM-CL), laser-induced fluorescence (LIF), wavelength resolved thermally stimulated luminescence (WR-TSL), trace elements analysis by mass spectrometry (ICP-MS) and Raman spectroscopy (RS). The results provide a significant step forward in the interpretation of the luminescence mechanisms: the main luminescent centres are identified as alkali-compensated (mainly Li+ and Na+, K+ and H+) aluminum [AlO4/M+]0 centres substituting for Si, where the recombination of a self-trapped exciton (STE) or an electron at a nonbridging oxygen hole centre (NBOHC) are active.
Dellagiustaite, ideally Al2V2+O4, is a new spinel-group mineral from Sierra de Comechingones, San Luis, Argentina, where it is found associated with hibonite (containing tubular inclusions, 5–100 μm, of metallic vanadium), grossite, and two other unknown phases with ideal stoichiometry of Ca2Al3O6F and Ca2Al2SiO7. A very similar rock containing dellagiustaite has been found at Mt Carmel (northern Israel), where super-reduced mineral assemblages have crystallized from high-T melts trapped in corundum aggregates (micro-xenoliths) within picritic-tholeiitic lavas ejected from Cretaceous volcanoes. In the holotype, euhedral grains of dellagiustaite are found as inclusions in grossite. The empirical average chemical formula of dellagiustaite is (Al1.09 V 0.91 2 + V 0.87 3 + Mg0.08 Ti 0.04 3 + Mn0.01)Σ3O4, but it may show limited replacement of V2+ by Mg and of V3+ by Al. As Al is the dominant trivalent cation, the ideal formula is Al2V2+O4 according to the current IMA rules. Dellagiustaite shows the usual space group of spinel-group minerals (Fd 3 ¯ m, R1 = 1.46%) with a = 8.1950(1) Å. The observed mean bond lengths <T–O> = 1.782(2) Å and <M–O> = 2.0445(9) Å, the observed site scattering (T = 13.3 eps, M = 22.5 eps), and the chemical composition show that dellagiustaite is an inverse spinel: T tetrahedra are occupied by Al3+, whereas M octahedra are occupied by V2+ and V3+, leading to the site assignment as TAlM( V 0.91 2 + V 0.88 3 + Al 0.09 3 + Mg0.08 Ti 0.03 3 + Mn0.01)O4.
Olmiite, ideally CaMn[SiO 3 (OH)](OH), is a newly identified mineral from the N'Chwaning II mine of the Kalahari manganese fields (Republic of South Africa), which occurs as a product of hydrothermal alteration associated with poldervaartite, celestine, sturmanite, bultfonteinite and hematite. The mineral occurs as wheat-sheaf aggregates consisting of pale to intense reddish pink minute crystals. Olmiite is transparent with vitreous lustre, and exhibits deep-red fluorescence under short-wave UV-light. The mineral is brittle, with irregular fracture. Streak is white and Mohs hardness is 5À5Ý. No cleavage was observed. The measured density (pycnometer method) is 3.05(3) g/cm 3 . The calculated density is 3.102 g/cm 3 or 3.109 g/cm 3 using the unit-cell volume from single-crystal or powder data, respectively. Olmiite is biaxial positive, with refractive indices a = 1.663 (1), b = 1.672(1), g = 1.694(1) (589 nm), 2V meas = 71.8(1)º, 2V calc = 66(8)º. The optical orientation is X = a, Y = c, Z = b and dispersion: r > v, distinct. Pleochroism is not observed. Chemical analysis by electron microprobe yielded the chemical formula (Ca 2Àx Mn x Fe y )[SiO 3 (OH)](OH), with 0.84 4 x 4 0.86, and y 4 0.01. Olmiite is orthorhombic, space group Pbca, with a = 9.249(3), b = 9.076(9), c = 10.342(9) Å , V = 868(1) Å 3 and Z = 8. The strongest five powder-diffraction lines [d in Å , (I/I o ), hkl] are: 4structure refinement (R1 = 2.74% for 1012 observed reflections) showed that the atomic arrangement of olmiite is similar to that of poldervaartite, with all Mn ordered on the M2 site. Significant variations in bond distances and angles are related to the pronounced difference in the Mn content. Olmiite, therefore, is the Mndominant analogue of poldervaartite. The name poldervaartite should be reserved for samples having Ca dominant at the M2 site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.