Kenaf (Hibiscus cannabinus L.) is an industrial crop used as a raw material in various fields and is cultivated worldwide. Compared to high potential for its utilization, breeding sector is not vigorous partially due to laborous breeding procedure. Thus, efficient breeding methods are required for varieties that can adapt to various environments and obtain optimal production. For that, identifying kenaf’s characteristics is very important during the breeding process. Here, we investigated if RGB based vegetative index (VI) could be associated with traits for biomass. We used 20 varieties and germplasm of kenaf and RGB images taken with unmanned aerial vehicles (UAVs) for field selection in early and late growth stage. In addition, measuring the stem diameter and the number of nodes confirmed whether the vegetative index value obtained from the RGB image could infer the actual plant biomass. Based on the results, it was confirmed that the individual surface area and estimated plant height, which were identified from the RGB image, had positive correlations with the stem diameter and node number, which are actual growth indicators of the rate of growth further, biomass could also be estimated based on this. Moreover, it is suggested that VIs have a high correlation with actual growth indicators; thus, the biomass of kenaf could be predicted. Interstingly, those traits showing high correlation in the late stage had very low correlations in the early stage. To sum up, the results in the current study suggest a more efficient breeding method by reducing labor and resources required for breeding selection by the use of RGB image analysis obtained by UAV. This means that considerable high-quality research could be performed even with a tight budget. Furthermore, this method could be applied to crop management, which is done with other vegetative indices using a multispectral camera.
Kenaf (Hibiscus cannabinus L.) is widely used as an important industrial crop. It has the potential to act as a sustainable energy provider in the future, and contains beneficial compounds for medical and therapeutic use. However, there are no clear breeding strategies to increase its biomass or leaf volume. Thus, to attain an increase in these parameters, we examined potential key traits such as stem diameter, plant height, and number of nodes to determine the relationship among them. We hypothesized that it would be easier to reduce the amount of time and labor required for breeding if correlations among these parameters are identified. In this study, we found a strong positive correlation between height and number of nodes (Spearman’s Rho = 0.67, p < 0.001) and number of nodes and stem diameter (Spearman’s Rho = 0.65, p < 0.001), but a relatively low correlation (Spearman’s Rho = 0.34, p < 0.01) between height and stem diameter in the later stages of kenaf growth. We suggest that an efficient breeding strategy could be devised according to the breeding purpose, considering the correlations between various individual traits of kenaf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.