Glucose bio-sensing
technologies have received increasing attention
in the last few decades, primarily due to the fundamental role that
glucose metabolism plays in diseases (e.g., diabetes). Molecularly
imprinted polymers (MIPs) could offer an alternative means of analysis
to a field that is traditionally dominated by enzyme-based devices,
posing superior chemical stability, cost-effectiveness, and ease of
fabrication. Their integration into sensing devices as recognition
elements has been extensively studied with different readout methods
such as quartz-crystal microbalance or impedance spectroscopy. In
this work, a dummy imprinting approach is introduced, describing the
synthesis
and optimization of a MIP toward the sensing of glucose. Integration
of this polymer into a thermally conductive receptor layer was achieved
by micro-contact deposition. In essence, the MIP particles are pressed
into a polyvinyl chloride adhesive layer using a polydimethylsiloxane
stamp. The prepared layer is then evaluated with the so-called heat-transfer
method, allowing the determination of the specificity and the sensitivity
of the receptor layer. Furthermore, the selectivity was assessed by
analyzing the thermal response after infusion with increasing concentrations
of different saccharide analogues in phosphate-buffered saline (PBS).
The obtained results show a linear range of the sensor of 0.0194–0.3300
mM for the detection of glucose in PBS. Finally, a potential application
of the sensor was demonstrated by exposing the receptor layer to increasing
concentrations of glucose in human urine samples, demonstrating a
linear range of 0.0444–0.3300 mM. The results obtained in this
paper highlight the applicability of the sensor both in terms of non-invasive
glucose monitoring and for the analysis of food samples.
In this work, a novel detection assay for the new psychoactive substance (NPS) 2-methoxiphenidine (2-MXP) and other diarylethylamines is introduced. The assay is based on the competitive displacement of dye molecules from molecularly imprinted polymers (MIPs) by the target molecule. The assay was fully characterized by studying the affinity of the MIP for six common dyes, expressed as the binding factor (BF). The results of this study indicate that the mathematical relationship between the BF of a dye and the imprinting factor (IF) for the target could be used for the prediction of the efficacy of the displacement assay. Dye-loaded MIP particles where incubated with the target, two adulterants and two legal pharmacological compounds. The target has a higher affinity for the MIP than the dye and displaces it out of the nanocavities of the receptor leading to a colour change in the filtrate that can be observed with the naked eye. Incubation of the MIP particles with the adulterants and legal medicines did not result in any observable change in absorbance. The robust, fast and low-cost nature of the assay, combined with its tailorable selectivity and generic nature, illustrate its potential as a pre-screening tool for the identification of narcotic substances in unidentified powders.
The rapid sensing of drug compounds has traditionally relied on antibodies, enzymes and electrochemical reactions. These technologies can frequently produce false positives/negatives and require specific conditions to operate. Akin to antibodies, molecularly imprinted polymers (MIPs) are a more robust synthetic alternative with the ability to bind a target molecule with an affinity comparable to that of its natural counterparts. With this in mind, the research presented in this article introduces a facile MIP-based dye displacement assay for the detection of (±) amphetamine in urine. The selective nature of MIPs coupled with a displaceable dye enables the resulting low-cost assay to rapidly produce a clear visual confirmation of a target’s presence, offering huge commercial potential. The following manuscript characterizes the proposed assay, drawing attention to various facets of the sensor design and optimization. To this end, synthesis of a MIP tailored towards amphetamine is described, scrutinizing the composition and selectivity (ibuprofen, naproxen, 2-methoxphenidine, quetiapine) of the reported synthetic receptor. Dye selection for the development of the displacement assay follows, proceeded by optimization of the displacement process by investigating the time taken and the amount of MIP powder required for optimum displacement. An optimized dose–response curve is then presented, introducing (±) amphetamine hydrochloride (0.01–1 mg mL−1) to the engineered sensor and determining the limit of detection (LoD). The research culminates in the assay being used for the analysis of spiked urine samples (amphetamine, ibuprofen, naproxen, 2-methoxphenidine, quetiapine, bupropion, pheniramine, bromopheniramine) and evaluating its potential as a low-cost, rapid and selective method of analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.