Glioblastoma multiforme (GBM) are highly proliferative tumors currently treated by surgical removal, followed by radiotherapy and chemotherapy, which are counteracted by intratumoral hypoxia. Here we exploited image guided surgery to sample multiple intratumoral areas to define potential cellular heterogeneity in correlation to the oxygen tension gradient within the GBM mass. Our results indicate that more immature cells are localized in the inner core and in the intermediate layer of the tumor mass, whereas more committed cells, expressing glial fibrillary acidic protein and b-III-tubulin, are distributed along the peripheral and neo-vascularized area, where Smad1/5/8 and Stat3 result to be activated. Moreover, GBM stem cells, identified with the stem cell marker CD133, express high level of DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT) known to be involved in chemotherapy resistance and highly expressed in the inner core of the tumor mass. Importantly, these cells and, particularly, CD133 1 cells result to be resistant to temozolomide (TMZ), the most used oral alkylating agent for the treatment of GBM, which specifically causes apoptosis only in GBM cells derived from the peripheral layer of the tumor mass. These results indicate a correlation between the intratumoral hypoxic gradient, the tumor cell phenotype, and the tumor resistance to chemotherapy leading to a novel concentric model of tumor stem cell niche, which may be useful to define the real localization of the chemoresistant GBM tumor cells in order to design more effective treatment strategies. STEM CELLS 2010; 28:851-862Disclosure of potential conflicts of interest is found at the end of this article.
Glioblastoma multiforme (GBM) is the most common brain tumour, characterized by a central and partially necrotic (i.e., hypoxic) core enriched in cancer stem cells (CSCs). We previously showed that the most hypoxic and immature (i.e., CSCs) GBM cells were resistant to Temozolomide (TMZ) in vitro, owing to a particularly high expression of O6-methylguanine-DNA-methyltransferase (MGMT), the most important factor associated to therapy resistance in GBM. Bone morphogenetic proteins (BMPs), and in particular BMP2, are known to promote differentiation and growth inhibition in GBM cells. For this reason, we investigated whether a BMP2-based treatment would increase TMZ response in hypoxic drug-resistant GBM-derived cells. Here we show that BMP2 induced strong differentiation of GBM stem-like cells and subsequent addition of TMZ caused dramatic increase of apoptosis. Importantly, we correlated these effects to a BMP2-induced downregulation of both hypoxia-inducible factor-1α (HIF-1α) and MGMT. We report here a novel mechanism involving the HIF-1α-dependent regulation of MGMT, highlighting the existence of a HIF-1α/MGMT axis supporting GBM resistance to therapy. As confirmed from this evidence, over-stabilization of HIF-1α in TMZ-sensitive GBM cells abolished their responsiveness to it. In conclusion, we describe a HIF-1α-dependent regulation of MGMT and suggest that BMP2, by down-modulating the HIF-1α/MGMT axis, should increase GBM responsiveness to chemotherapy, thus opening the way to the development of future strategies for GBM treatment.
We review 40 epidermoids and 4 dermoids of the skull and brain treated surgically in our Department between 1976 and 1987. Fourteen were extradural and 30 intradural. The mean duration of symptoms was 3 years for extradural and 10 years for intradural tumours. Symptoms varied with tumour site, in some sites being helpful in differential diagnosis. Skull X-rays and CT were the key diagnostic investigations in extradural and CT in intradural lesions, the latter, with few exceptions, presenting a characteristic CT scan. In 7 cases MRI supplied important details on the tumour boundaries. All the diploic and orbital lesions were removed totally, with a good outcome. Twelve of the intradural lesions were removed totally, 9 subtotally and 9 partially, with a good outcome in 21 patients and a poor outcome in 4; 5 patients died. Outcome was unrelated to degree of removal.
Data from techniques such as limiting oxygen index, thermal analysis, scanning electron microscope, heat deformation curve, mechanical properties measurement, etc. show that cured epoxy resin modified by brominated castor oil possesses good flame retardation, toughness, moderate smoke suppression, and some degree of resistance to heat. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2530–2534, 2002
Medulloblastoma (MDB) is the most common brain malignancyof childhood. It is currently thought that MDB arises from aberrantly functioning stem cells in the cerebellum that fail to maintain proper control of self-renewal. Additionally, it has been reported that MDB cells display higher endogenous Notch signaling activation, known to promote the survival and proliferation of neoplastic neural stem cells and to inhibit their differentiation. While interaction between Hypoxia Inducible Factor-1α (HIF-1α) and Notch signalling is required to maintain normal neural precursors in an undifferentiated state, an interaction has not been identified in MDB. Here we investigate whether hypoxia, through HIF-1α stabilization, modulates Notch1 signaling in primary MDB-derived cells. Our results indicate that MDB-derived precursor cells require hypoxic conditions for in vitro expansion, whereas acute exposure to 20% oxygen induces tumor cell differentiation and death through inhibition of Notch signaling. Importantly, stimulating Notch1 activation with its ligand Dll4 under hypoxic conditions leads to expansion of MDB-derived CD133+ and nestin+ precursors, suggesting a regulatory effect on stem cells. In contrast, MDB cells undergo neuronal differentiation when treated with γ-secretase inhibitor, which prevents Notch activation. These results suggest that hypoxia, by maintaining Notch1 in its active form, preserves MDB stem cell viability and expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.