Prolyl 4-hydroxylase domain (PHD) proteins are oxygen-dependent enzymes that hydroxylate hypoxia-inducible transcription factor (HIF) ␣-subunits, leading to their subsequent ubiquitination and degradation. Paradoxically, the expression of two family members (PHD2 and PHD3) is induced in hypoxic cell culture despite the reduced availability of the oxygen co-substrate, and it has been suggested that they become functionally relevant following re-oxygenation to rapidly terminate the HIF response. Here we show that PHDs are also induced in hypoxic mice in vivo, albeit in a tissue-specific manner. As demonstrated under chronically hypoxic conditions in vitro, PHD2 and PHD3 show a transient maximum but remain upregulated over more than 10 days, suggesting a feedback down-regulation of HIF-1␣ which then levels off at a novel set point. Indeed, hypoxic induction of PHD2 and PHD3 is paralleled by the attenuation of endogenous HIF-1␣. Using an engineered oxygen-sensitive reporter gene in a cellular background lacking endogenous HIF-1␣ and hence inducible PHD expression, we could show that increased exogenous PHD levels can compensate for a wide range of hypoxic conditions. Similar data were obtained in a reconstituted cellfree system in vitro. In summary, these results suggest that due to their high O 2 K m values, PHDs have optimal oxygensensing properties under all physiologically relevant oxygen concentrations; increased PHDs play a functional role even under oxygen-deprived conditions, allowing the HIF system to adapt to a novel oxygen threshold and to respond to another hypoxic insult. Furthermore, such an autoregulatory oxygen-sensing system would explain how a single mechanism works in a wide variety of differently oxygenated tissues.
The heterodimeric hypoxia-inducible transcription factors (HIFs) are central regulators of the response to low oxygenation. HIF-␣ subunits are constitutively expressed but rapidly degraded under normoxic conditions. Oxygen-dependent hydroxylation of two conserved prolyl residues by prolyl-4-hydroxylase domain-containing enzymes (PHDs) targets HIF-␣ for proteasomal destruction. We identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as a novel interactor of PHD2. Yeast two-hybrid, glutathione Stransferase pull-down, coimmunoprecipitation, colocalization, and mammalian two-hybrid studies confirmed specific FKBP38 interaction with PHD2, but not with PHD1 or PHD3. PHD2 and FKBP38 associated with their N-terminal regions, which contain no known interaction motifs. Neither FKBP38 mRNA nor protein levels were regulated under hypoxic conditions or after PHD inhibition, suggesting that FKBP38 is not a HIF/PHD target. Stable RNA interference-mediated depletion of FKBP38 resulted in increased PHD hydroxylation activity and decreased HIF protein levels and transcriptional activity. Reconstitution of FKBP38 expression abolished these effects, which were independent of the peptidyl prolyl cis/trans isomerase activity. Downregulation of FKBP38 did not affect PHD2 mRNA levels but prolonged PHD2 protein stability, suggesting that FKBP38 is involved in PHD2 protein regulation.
A mismatch between metabolic demand and oxygen delivery leads to microenvironmental changes in solid tumors. The resulting tumor hypoxia is associated with malignant progression, therapy resistance and poor prognosis. However, the molecular mechanisms underlying therapy resistance in hypoxic tumors are not fully understood. The hypoxia-inducible factor (HIF) is a master transcriptional activator of oxygen-regulated gene expression. Transformed mouse embryonic fibroblasts (MEFs) derived from HIF-1alpha-deficient mice are a popular model to study HIF function in tumor progression. We previously found increased chemotherapy and irradiation susceptibility in the absence of HIF-1alpha. Here, we show by single-cell electrophoresis, histone 2AX phosphorylation and nuclear foci formation of gammaH2AX and 53BP1, that the number of DNA double-strand breaks (DSB) is increased in untreated and etoposide-treated HIF-deficient MEFs. In etoposide-treated cells, cell cycle control and p53-dependent gene expression were not affected by the absence of HIF-1alpha. Using a candidate gene approach to screen 17 genes involved in DNA repair, messenger RNA (mRNA) and protein of three members of the DNA-dependent protein kinase complex were found to be decreased in HIF-deficient MEFs. Of note, residual HIF-1alpha protein in cancer cells with a partial HIF-1alpha mRNA knockdown was sufficient to confer chemoresistance. In summary, these data establish a novel molecular link between HIF and DNA DSB repair. We suggest that selection of early, non-hypoxic tumor cells expressing low levels of HIF-1alpha might contribute to HIF-dependent tumor therapy resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.