The specific mycobacterial methyl polysaccharides 3- O -methyl mannose polysaccharide (MMP) and the 6- O -methyl glucose lipopolysaccharides (MGLPs) were shown to modulate the fatty acid biosynthesis by the mycobacterial fatty acid synthetase I (FAS I). This activity is attributed to their fatty acid complexing properties allowing the release of the neo synthesized fatty acyl chain from the enzyme and probably their transport in the cell. To elucidate, at a molecular level, the mechanism of this unusual kind of polysaccharide-lipid biological interaction, we first analyzed, by mass spectrometry and proton nuclear magnetic resonance (1H NMR) spectroscopy, the structure of the polysaccharidic backbone (MGPs) of the MGLPs from Mycobacterium bovis BCG. This work reveals that this strain produces a new kind of MGP containing an unusual monosaccharide never described in the mycobacterial genus: a 2- N -acetyl-2,6-dideoxy-beta-glucopyranosyl. In addition,1H NMR data afforded evidence for the revision of three glycosidic linkages described previously. These modifications affect mainly the reducing end tetrasaccharide and have great consequences on the previously proposed molecular model of the MGP.
Summary
With the advent of fully automated sample preparation robots for Hydrogen–Deuterium eXchange coupled to Mass Spectrometry (HDX-MS), this method has become paramount for ligand binding or epitope mapping screening, both in academic research and biopharmaceutical industries. However, bridging the gap between commercial HDX-MS software (for raw data interpretation) and molecular viewers (to map experiment results onto a 3D structure for biological interpretation) remains laborious and requires simple but sometimes limiting coding skills. We solved this bottleneck by developing HDX-Viewer, an open-source web-based application that facilitates and quickens HDX-MS data analysis. This user-friendly application automatically incorporates HDX-MS data from a custom template or commercial HDX-MS software in PDB files, and uploads them to an online 3D molecular viewer, thereby facilitating their visualization and biological interpretation.
Availability and implementation
The HDX-Viewer web application is released under the CeCILL (http://www.cecill.info) and GNU LGPL licenses and can be found at https://masstools.ipbs.fr/hdx-viewer. The source code is available at https://github.com/david-bouyssie/hdx-viewer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.