Changes in global fire activity are influenced by a multitude of factors including land‐cover change, policies, and climatic conditions. This study uses 17 climate models to evaluate when changes in fire weather, as realized through the Fire Weather Index, emerge from the expected range of internal variability due to anthropogenic climate change using the time of emergence framework. Anthropogenic increases in extreme Fire Weather Index days emerge for 22% of burnable land area globally by 2019, including much of the Mediterranean and the Amazon. By the midtwenty‐first century, emergence among the different Fire Weather Index metrics occurs for 33–62% of burnable lands. Emergence of heightened fire weather becomes more widespread as a function of global temperature change. At 2 °C above preindustrial levels, the area of emergence is half that for 3 °C. These results highlight increases in fire weather conditions with human‐caused climate change and incentivize local adaptation efforts to limit detrimental fire impacts.
Very large fires (VLFs) have important implications for communities, ecosystems, air quality and fire suppression expenditures. VLFs over the contiguous US have been strongly linked with meteorological and climatological variability. Building on prior modelling of VLFs (>5000 ha), an ensemble of 17 global climate models were statistically downscaled over the US for climate experiments covering the historic and mid-21st-century periods to estimate potential changes in VLF occurrence arising from anthropogenic climate change. Increased VLF potential was projected across most historically fire-prone regions, with the largest absolute increase in the intermountain West and Northern California. Complementary to modelled increases in VLF potential were changes in the seasonality of atmospheric conditions conducive to VLFs, including an earlier onset across the southern US and more symmetric seasonal extension in the northern regions. These projections provide insights into regional and seasonal distribution of VLF potential under a changing climate, and serve as a basis for future strategic and tactical fire management options.
Heavy rainfall extremes are intensifying with warming at a rate generally consistent with the increase in atmospheric moisture, for accumulation periods from hours to days.• In some regions, high-resolution modeling, observed trends and observed temperature dependencies indicate stronger increases in short-duration, sub-daily, extreme rainfall intensities, up to twice what would be expected from atmospheric moisture increases alone.• Stronger local increases in short-duration extreme rainfall intensities are related to convective cloud feedbacks but their relevance to climate change is uncertain due to modulation by changes to temperature stratification and large-scale atmospheric circulation• The evidence is unclear whether storm size will increase or decrease with warming; however, increases in rainfall intensity and the spatial footprint of the storm can compound to give significant increases in the total rainfall during an event.• Evidence is emerging that sub-daily rainfall intensification is related to an intensification of flash flooding, at least locally. This will have serious implications for flash flooding on much of the planet and requires urgent climate-change adaptation measures.
Present-day precipitation–temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius–Clapeyron (CC) relation; for the Netherlands the dependency on surface dewpoint temperature follows 2 times the CC relation (2CC). The authors’ hypothesis—as supported by a simple physical argument presented here—is that this 2CC behavior arises from the physics of convective clouds. To further investigate this, the large-scale atmospheric conditions accompanying summertime afternoon precipitation events are analyzed using surface observations combined with a regional reanalysis. Events are precipitation measurements clustered in time and space. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dewpoint temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dewpoint, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dewpoint temperature range, supporting the theory that 2CC scaling is mainly due to the response of convection to increases in near-surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dewpoint. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dewpoint temperature range, suggesting potentially strong impacts of climatic warming.
Temperature scaling studies suggest that hourly rainfall magnitudes might increase beyond thermodynamic expectations with global warming 1,2,3 ; that is, above the Clausius-Clapeyron (CC) rate of ~6.5% °C -1 . However, there is limited evidence of such increases in long-term observations. Here, we calculate continental-average changes in the magnitude and frequency of extreme hourly and daily rainfall observations from Australia over 1990Australia over -2013Australia over and 1966Australia over -1989. Observed changes are compared to the uncertainty from natural variability and to expected changes from CC-scaling as a result of global mean surface temperature change. We show that increases in daily rainfall extremes are consistent with CC scaling, but are within the range of natural variability. By contrast, changes in the magnitude of hourly rainfall extremes are close to or exceed double the expected CC-scaling, and are above the range of natural variability, exceeding 3xCC in the tropical region (north of 23°S). These continental-scale changes in extreme rainfall are not explained by changes in the El Niño-Southern Oscillation or changes in the seasonality of extremes. Our results indicate that CC-scaling on temperature provides a severe underestimate of observed changes in hourly rainfall extremes in Australia, with implications for assessing the impacts of extreme rainfall. MainA warming climate is expected to cause an intensification of heavy rainfall 4 . Basic physical arguments suggest that, in the absence of changes in large-scale circulation (and associated moisture advection), the intensification will follow the water holding capacity of air, dictated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.