During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues 1–4. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signaling augment gluconeogenic gene expression through the de-phosphorylation and nuclear shuttling of Forkhead Box O1 (FOXO1) 5–7. Here we show that a fasting-inducible switch, consisting of the histone acetyl-transferase (HAT) P300 and the nutrient-sensing deacetylase Sirtuin 1 (SIRT1), maintains energy balance through the sequential induction of CRTC2 and FOXO1. Following glucagon induction, CRTC2 stimulated gluconeogenic gene expression through an association with P300, which we show here is also activated by de-phosphorylation at Ser89 during fasting. In turn, P300 increased hepatic CRTC2 activity by acetylating it at Lys628, a site that also targets CRTC2 for degradation following its ubiquitination by the E3 ligase Constitutive Photomorphogenic Protein (COP1) 8. Glucagon effects were attenuated during late fasting, when CRTC2 was down-regulated due to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the SIRT1 gene or by administration of SIRT1 antagonist, increased CRTC2 activity and glucose output, while exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α) by SIRT1 activators 9–12, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.
During fasting, mammals maintain glucose homeostasis by stimulating hepatic gluconeogenesis1. Elevations in circulating glucagon (GLU) and epinephrine trigger the cAMP mediated phosphorylation of Creb and dephosphorylation of the Creb coactivator Crtc22. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment3–6. Here we show that Creb activity during fasting is modulated by Cryptochromes (Cry1 and Cry2), core components of the clock that are rhythmically expressed in the liver. Cry was elevated during the night/day transition, when it reduced fasting gluconeogenic gene expression by blocking GLU-mediated increases in intracellular cAMP concentrations and in the PKA-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry inhibited accumulation of cAMP in response to G protein coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry appeared to modulate GPCR activity directly through interaction with Gsα . As hepatic over-expression of Cry lowered blood glucose concentrations and improved insulin sensitivity in insulin resistant db/db mice, our results suggest that compounds which enhance Cry activity may provide therapeutic benefit to individuals with type II diabetes.
During feeding, increases in circulating pancreatic insulin inhibit hepatic glucose output through the activation of the Ser/Thr kinase AKT and subsequent phosphorylation of the forkhead transcription factor FOXO1 (refs 1-3). Under fasting conditions, FOXO1 increases gluconeogenic gene expression in concert with the cAMP responsive coactivator TORC2 (refs 4-8). In response to pancreatic glucagon, TORC2 is de-phosphorylated at Ser 171 and transported to the nucleus, in which it stimulates the gluconeogenic programme by binding to CREB. Here we show in mice that insulin inhibits gluconeogenic gene expression during re-feeding by promoting the phosphorylation and ubiquitin-dependent degradation of TORC2. Insulin disrupts TORC2 activity by induction of the Ser/Thr kinase SIK2, which we show here undergoes AKT2-mediated phosphorylation at Ser 358. Activated SIK2 in turn stimulated the Ser 171 phosphorylation and cytoplasmic translocation of TORC2. Phosphorylated TORC2 was degraded by the 26S proteasome during re-feeding through an association with COP1, a substrate receptor for an E3 ligase complex that promoted TORC2 ubiquitination at Lys 628. Because TORC2 protein levels and activity were increased in diabetes owing to a block in TORC2 phosphorylation, our results point to an important role for this pathway in the maintenance of glucose homeostasis.
It is now becoming evident that the liver has an important role in the control of whole body metabolism of energy nutrients. In this review, we focus on recent findings showing that AMP-activated protein kinase (AMPK) plays a major role in the control of hepatic metabolism. AMPK integrates nutritional and hormonal signals to promote energy balance by switching on catabolic pathways and switching off ATP-consuming pathways, both by short-term effects on phosphorylation of regulatory proteins and by long-term effects on gene expression. Activation of AMPK in the liver leads to the stimulation of fatty acid oxidation and inhibition of lipogenesis, glucose production and protein synthesis. Medical interest in the AMPK system has recently increased with the demonstration that AMPK could mediate some of the effects of the fat cell-derived adiponectin and the antidiabetic drugs metformin and thiazolidinediones. These findings reinforce the idea that pharmacological activation of AMPK may provide, through signalling and metabolic and gene expression effects, a new strategy for the management of metabolic hepatic disorders linked to type 2 diabetes and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.