We tested the accuracy of ChatGPT, a large language model (LLM), in the ophthalmology question-answering space using two popular multiple choice question banks used for the high-stakes Ophthalmic Knowledge Assessment Program (OKAP) exam. The testing sets were of easy-to-moderate difficulty and were diversified, including recall, interpretation, practical and clinical decision-making problems. ChatGPT achieved 55.8% and 42.7% accuracy in the two 260-question simulated exams. Its performance varied across subspecialties, with the best results in general medicine and the worst in neuro-ophthalmology and ophthalmic pathology and intraocular tumors. These results are encouraging but suggest that specialising LLMs through domain-specific pre-training may be necessary to improve their performance in ophthalmic subspecialties.
Several factors are associated with pneumatic retinopexy outcomes for rhegmatogenous retinal detachments. These factors should be taken into consideration when identifying patients who would benefit from pneumatic retinopexy and those who are at risk of requiring additional interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.