Salmonella genomic island 1 (SGI1) contains an antibiotic resistance gene cluster and has been previously identified in multidrug-resistant Salmonella enterica serovars Typhimurium DT104, Agona, and Paratyphi B. We identified a variant SGI1 antibiotic-resistance gene cluster in a multidrug-resistant strain of S. enterica serovar Albany isolated from food fish from Thailand and imported to France. In this strain, the streptomycin resistance aadA2 gene cassette in one of the SGI1 integrons was replaced by a dfrA1 gene cassette, conferring resistance to trimethoprim and an open reading frame of unknown function. Thus, this serovar Albany strain represents the fourth S. enterica serovar in which SGI1 has been identified and the first SGI1 example where gene cassette replacement took place in one of its integron structures. The antibiotic resistance gene cluster of serovar Albany strain 7205.00 constitutes a new SGI1 variant; we propose a name of SGI1-F.
During 2002 to 2003, eight Salmonella enterica serotype Virchow poultry and poultry product isolates from various sources (chicken farms, poultry slaughterhouse, or retail store) and one S. enterica rough strain isolated from human feces were found to produce extended-spectrum -lactamase CTX-M-9. Poultry and poultry product isolates were recovered from different locations in the southwest of France. The human rough isolate had sequences of flagellin genes (fliC and fljB) typical of serotype Virchow and ribotyping and pulsedfield gel electrophoresis (PFGE) patterns closely similar to those of serotype Virchow strains. PFGE confirmed the clonal relationship between the poultry isolates, while the human isolate displayed a pattern with 94% homology. The bla CTX-M-9 gene was located on a conjugative plasmid and was shown to be linked to orf513. Plasmid profiling found a very similar EcoRI restriction pattern in six transconjugants studied, including transconjugants obtained from the human isolate. A single hatchery, supplying chicks to the six farms, was identified. Emergence of extended-spectrum -lactamase-producing S. enterica strains in food animals is a major concern, as such strains could disseminate on a large scale and lead to antibiotic therapy difficulties.
In France, Salmonella Derby is one of the most prevalent serotypes in pork and poultry meat. Since 2006, it has ranked among the 10 most frequent Salmonella serotypes isolated in humans. In previous publications, Salmonella Derby isolates have been characterized by pulsed field gel electrophoresis (PFGE) and antimicrobial resistance (AMR) profiles revealing the existence of different pulsotypes and AMR phenotypic groups. However, these results suffer from the low discriminatory power of these typing methods. In the present study, we built a collection of 140 strains of S. Derby collected in France from 2014 to 2015 representative of the pork and poultry food sectors. The whole collection was characterized using whole genome sequencing (WGS), providing a significant contribution to the knowledge of this underrepresented serotype, with few genomes available in public databases. The genetic diversity of the S. Derby strains was analyzed by single-nucleotide polymorphism (SNP). We also investigated AMR by both genome and phenotype, the main Salmonella pathogenicity island (SPI) and the fimH gene sequences. Our results show that this S. Derby collection is spread across four different lineages genetically distant by an average of 15k SNPs. These lineages correspond to four multilocus sequence typing (MLST) types (ST39, ST40, ST71, and ST682), which were found to be associated with specific animal hosts: pork and poultry. While the ST71 and ST682 strains are pansusceptible, ST40 isolates are characterized by the multidrug resistant profile STR-SSS-TET. Considering virulence determinants, only ST39 and ST40 present the SPI-23, which has previously been associated with pork enterocyte invasion. Furthermore, the pork ST682 isolates were found to carry mutations in the fimH sequence that could participate in the host tropism of this group. Our phylogenetic analysis demonstrates the polyphyletic nature of the Salmonella serotype Derby and provides an opportunity to identify genetic factors associated with host adaptation and markers for the monitoring of these different lineages within the corresponding animal sectors. The recognition of these four lineages is of primary importance for epidemiological surveillance throughout the food production chains and constitutes the first step toward refining monitoring and preventing dispersal of this pathogen.
Nontyphoid Salmonella is one of the main causes of bacterial gastroenteritis worldwide and is responsible for 65% of reported outbreaks of foodborne diseases in France. Serotyping is widely used for isolate preliminary identification, but it poorly discriminates strains. Rapid, efficient molecular subtyping tools have therefore been developed for the investigation of outbreaks. We evaluated the performance of the pulsed-field gel electrophoresis (PFGE) method for discrimination of 31 Salmonella serotypes frequently isolated in France. We set up a genomic database of Salmonella strains isolated from food, animals, the environment, and humans to improve the management of contamination and reactions to foodborne disease outbreaks. We studied 1128 isolates by PFGE, according to the standardized PulseNet protocol. We identified 452 PFGE patterns, 67.5% of which corresponded to a single isolate. The ability of this method to distinguish between isolates was estimated by calculating the Simpson index and the 95% confidence interval. Values obtained ranged between 0.33 (0.11-0.54) to 0.99 (0.96-1.00), depending on serotype. Epidemiological information about isolates was used for analyses of intra- and interserotype diversity results and for determining whether PFGE patterns were linked to the source of the isolate. Clustering analysis of the PFGE patterns obtained confirmed that serotype and PFGE genotype were closely linked. Some PFGE patterns were identified as major patterns, each of these patterns being found in at least 10 isolates. The database generated has already proved its effectiveness in epidemiological investigations in livestock production and foodborne outbreaks.
On 18 January 2016, the French National Reference Centre for Salmonella reported to Santé publique France an excess of Salmonella enterica serotype Dublin (S. Dublin) infections. We investigated to identify the source of infection and implement control measures. Whole genome sequencing (WGS) and multilocus variable-number tandem repeat analysis (MLVA) were performed to identify microbiological clusters and links among cases, animal and food sources. Clusters were defined as isolates with less than 15 single nucleotide polymorphisms determined by WGS and/or with identical MLVA pattern. We compared different clusters of cases with other cases (case–case study) and controls recruited from a web-based cohort (case–control study) in terms of food consumption. We interviewed 63/83 (76%) cases; 2,914 controls completed a questionnaire. Both studies’ findings indicated that successive S. Dublin outbreaks from different sources had occurred between November 2015 and March 2016. In the case–control study, cases of distinct WGS clusters were more likely to have consumed Morbier (adjusted odds ratio (aOR): 14; 95% confidence interval (CI): 4.8–42) or Vacherin Mont d’Or (aOR: 27; 95% CI: 6.8–105), two bovine raw-milk cheeses. Based on these results, the Ministry of Agriculture launched a reinforced control plan for processing plants of raw-milk cheeses in the production region, to prevent future outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.