In this paper, we show that the integro quintic splines can locally be constructed without solving any systems of equations. The new construction does not require any additional end conditions. By virtue of these advantages the proposed algorithm is easy to implement and effective. At the same time, the local integro quintic splines possess as good approximation properties as the integro quintic splines. In this paper, we have proved that our local integro quintic spline has superconvergence properties at the knots for the first and third derivatives. The orders of convergence at the knots are six (not five) for the first derivative and four (not three) for the third derivative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.