Age is an important factor in many cardiovascular diseases, in which endothelial cells (ECs) play an important role. Circular RNAs (circRNAs) have been reported in many cardiovascular diseases, but their role in ageing EC-related angiogenesis is unclear. We aimed to identify a functional circRNA that regulates angiogenesis during ageing and explore its specific mechanism. In this study, we searched for differentially expressed circRNAs in old endothelial cells (OECs) and young endothelial cells (YECs) by circRNA sequencing and found that circGSE1 was significantly downregulated in OECs. Our study showed that circGSE1 could promote the proliferation, migration and tube formation of OECs in vitro . In a mouse model of femoral artery ligation and ischemia, circGSE1 promoted blood flow recovery and angiogenesis in the ischemic limbs of ageing mice. Mechanistically, we found that overexpressing circGSE1 reduced miR-323-5p expression, increased neuropilin-1 (NRP1) expression, and promoted proliferation, migration, and tube formation in OECs, while knocking down circGSE1 increased miR-323-5p expression, reduced NRP1 expression, and inhibited proliferation, migration, and tube formation in YECs. During EC ageing, circGSE1 may act through the miR-323-5p/NRP1 axis and promote endothelial angiogenesis in mice. Finally, the circGSE1/miR-323-5p/NRP1 axis could serve as a potential and promising therapeutic target for angiogenesis during ageing.
Background. Aging leads to vascular endothelial cell senescence. Decreased expression of VEGFA and VEGFR2 plays a crucial role in impairing angiogenesis in senescent endothelial cells. Noncoding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), regulate endothelial cell proliferation, differentiation, apoptosis, and migration and participate in the occurrence and development of vascular diseases. However, the mechanism of noncoding RNAs in age-related vascular endothelial dysfunction remains unclear. Here, we aimed to identify the circRNA that is associated with VEGF/VEGFR2 signaling pathway activation in angiogenesis. Methods. Immunoblotting, quantitative reverse transcription-polymerase chain reaction (qRT–PCR), in vitro and in vivo experiments, luciferase assays, and chromatin immunoprecipitation followed by qRT–PCR (ChIP–qPCR) assays were performed to clarify the roles played by circCRIM1 in mouse aortic endothelial cell (MAEC) angiogenesis. Results. CircCRIM1 expression was downregulated in both an aging mouse model of lower limb ischemia in vivo and aging MAECs in vitro. Overexpressing circCRIM1 mediated through a plasmid or adeno-associated virus (AAV) reversed the downregulation of angiogenesis-related phenotype acquisition during aging. MiR-455-3p was confirmed to be a potential target of circCRIM1 through luciferase assays followed by RNA fluorescence in situ hybridization (FISH), which revealed the colocalization of circCRIM1 and miR-455-3p. CircCRIM1 was found to be a competitive endogenous RNA that sponged miR-455-3p and regulated angiogenesis-related phenotypes in MAECs. Furthermore, Twist1 was found to be downstream of miR-455-3p. A ChIP–qPCR assay showed that Twist1 promoted VEGFR2 expression by binding to the promoter region, playing a vital role in angiogenesis. Conclusions. Decreased expression of circCRIM1 impaired angiogenesis in aging via the miR-455-3p/Twist1/VEGFR2 axis. Our findings suggest that overexpression of circCRIM1 may be an effective therapeutic strategy for promoting ischemic lower limb blood flow recovery.
Objective Post-thrombotic syndrome (PTS), an important complication of deep venous thrombosis (DVT), adversely affects patients’ quality of life. Endovascular intervention in PTS can relieve symptoms rapidly with high therapeutic value. This study mainly focuses on how to improve postoperative stent patency rates and aims to find prognostic factors impacting patency. Methods According to the specific inclusion and exclusion criteria, PTS patients who underwent endovascular intervention at the First Affiliated Hospital of Sun Yat-sen University from December 1, 2014, to December 31, 2019, were included in this single-center prospective study. Follow-up data were collected and analyzed regularly over 2 years. Results Overall, 31 PTS patients were enrolled in the study. The mean age of these patients was 55.39 ± 11.81, including 19 male patients. Stent implantation was successful in 22 PTS patients, with a technical success rate of 70.97%. The average Villalta scores of the stent-implanted group and the non-stent-implanted group were 5.95 ± 2.57 and 5.78 ± 2.95, respectively, with no significant difference observed. In the stent-implanted group, the perioperative patency rate was 81.81% (18/22), and the follow-up patency rates were 68.18% (15/22) within 3 months, 59.09% (13/22) within 6 months, 45.45% (10/22) within 1 year, and 36.36% (8/22) within 2 years. Based on the stent placement segments, the 22 PTS patients were divided into two subgroups: the iliofemoral vein balloon dilation + iliofemoral vein stent implantation (FV-S) subgroup and the iliofemoral vein balloon dilation + iliac vein stent implantation (FV-B) subgroup. In the FV-S subgroup, the perioperative patency rate was 100.00% (14/14), and the follow-up patency rates were 85.71% (12/14), 71.43% (10/14), 57.14% (8/14) and 50.00% (7/14), which were higher than those for overall stent patency of all patients. The postoperative patency rates in the FV-B subgroup were 50.00% (4/8), 37.50% (3/8), 37.50% (3/8), 25.00% (2/8), and 12.50% (1/8). The secondary postoperative patency rates in the FV-B subgroup were 100.00% (8/8), 87.50% (7/8), 75.00% (6/8), 62.50% (5/8) and 50.00% (4/8). Conclusions For PTS patients with iliofemoral vein occlusion but patent inflow, iliofemoral vein stent implantation is a more efficient therapeutic option than iliofemoral vein balloon dilation with iliac vein stent implantation for PTS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.