BackgroundDuring early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-random X chromosome inactivation (XCI) and polymorphic X chromosomes to study the dynamics of gene silencing over the inactive X chromosome by high-resolution allele-specific RNA-seq.ResultsInduction of XCI by differentiation of female ESCs shows that genes proximal to the X-inactivation center are silenced earlier than distal genes, while lowly expressed genes show faster XCI dynamics than highly expressed genes. The active X chromosome shows a minor but significant increase in gene activity during differentiation, resulting in complete dosage compensation in differentiated cell types. Genes escaping XCI show little or no silencing during early propagation of XCI. Allele-specific RNA-seq of neural progenitor cells generated from the female ESCs identifies three regions distal to the X-inactivation center that escape XCI. These regions, which stably escape during propagation and maintenance of XCI, coincide with topologically associating domains (TADs) as present in the female ESCs. Also, the previously characterized gene clusters escaping XCI in human fibroblasts correlate with TADs.ConclusionsThe gene silencing observed during XCI provides further insight in the establishment of the repressive complex formed by the inactive X chromosome. The association of escape regions with TADs, in mouse and human, suggests that TADs are the primary targets during propagation of XCI over the X chromosome.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0698-x) contains supplementary material, which is available to authorized users.
Highlights d Integrative proteomic analysis of the mouse ground-state pluripotent epigenome d Ground-state pluripotency is characterized by highly abundant PRC2 and H3K27me3 d PRC2 protects 2i ESCs from primed-like features such as DNA methylation d The pluripotent ground state is independent of both H3K27me3 and DNA methylation
The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells.
A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally, epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery. Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout, including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust sample preparation and increased throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.