Summary
There is an urgent need for new drug regimens to rapidly cure tuberculosis. Here, we report the development of drug response assayer (DRonA) and “MLSynergy,” algorithms to perform rapid drug response assays and predict response of
Mycobacterium tuberculosis
(Mtb) to drug combinations. Using a transcriptome signature for cell viability, DRonA detects Mtb killing by diverse mechanisms in broth culture, macrophage infection, and patient sputum, providing an efficient and more sensitive alternative to time- and resource-intensive bacteriologic assays. Further, MLSynergy builds on DRonA to predict synergistic and antagonistic multidrug combinations using transcriptomes of Mtb treated with single drugs. Together, DRonA and MLSynergy represent a generalizable framework for rapid monitoring of drug effects in host-relevant contexts and accelerate the discovery of efficacious high-order drug combinations.
The ability of Mycobacterium tuberculosis (Mtb) to adopt heterogeneous physiological states underlies its success in evading the immune system and tolerating antibiotic killing. Drug tolerant phenotypes are a major reason why the tuberculosis (TB) mortality rate is so high, with over 1.8 million deaths annually. To develop new TB therapeutics that better treat the infection (faster and more completely), a systems-level approach is needed to reveal the complexity of network-based adaptations of Mtb. Here, we report a new predictive model called PRIME (Phenotype of Regulatory influences Integrated with Metabolism and Environment) to uncover environment-specific vulnerabilities within the regulatory and metabolic networks of Mtb. Through extensive performance evaluations using genome-wide fitness screens, we demonstrate that PRIME makes mechanistically accurate predictions of context-specific vulnerabilities within the integrated regulatory and metabolic networks of Mtb, accurately rank-ordering targets for potentiating treatment with frontline drugs.
The treatment of tuberculosis (TB), which kills 1.8 million each year, remains difficult, especially with the emergence of multidrug resistant strains of Mycobacterium tuberculosis (Mtb). While there is an urgent need for new drug regimens to treat TB, the process of drug evaluation is slow and inefficient owing to the slow growth rate of the pathogen, the complexity of performing bacteriologic assays in a high-containment facility, and the context-dependent variability in drug sensitivity of the pathogen. Here, we report the development of DRonA and MLSynergy, algorithms to perform rapid drug response assays and predict response of Mtb to novel drug combinations. Using a novel transcriptome signature for cell viability, DRonA accurately detects bacterial killing by diverse mechanisms in broth culture, macrophage infection and patient sputum, providing an efficient, and more sensitive alternative to time- and resource-intensive bacteriologic assays. Further, MLSynergy builds on DRonA to predict novel synergistic and antagonistic multi-drug combinations using transcriptomes of Mtb treated with single drugs. Together DRonA and MLSynergy represent a generalizable framework for rapid monitoring of drug effects in host-relevant contexts and accelerate the discovery of efficacious high-order drug combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.