We present a theoretical proposal for the Herzberg circuit and controlled accumulation of Berry's phase in a chirality-based coded qubit in a triangular triple quantum dot molecule with one electron each. The qubit is encoded in the two degenerate states of a three-spin complex with total spin S = 1/2. Using a Hubbard and Heisenberg model the Herzberg circuit encircling the degeneracy point is realized by adiabatically tuning the successive on-site energies of quantum dots and tunnel couplings across a pair of neighboring dots. It is explicitly shown that encircling the degeneracy point leads to the accumulation of the geometrical Berry's phase. We show that only the triangular, not the linear, quantum dot molecule allows for the generation of Berry's phase and we discuss a protocol to detect this geometrical phase.
Understanding how rich dynamics emerge in neural populations requires models exhibiting a wide range of behaviors while remaining interpretable in terms of connectivity and single-neuron dynamics. However, it has been challenging to fit such mechanistic spiking networks at the single-neuron scale to empirical population data. To close this gap, we propose to fit such data at a mesoscale, using a mechanistic but low-dimensional and, hence, statistically tractable model. The mesoscopic representation is obtained by approximating a population of neurons as multiple homogeneous pools of neurons and modeling the dynamics of the aggregate population activity within each pool. We derive the likelihood of both single-neuron and connectivity parameters given this activity, which can then be used to optimize parameters by gradient ascent on the log likelihood or perform Bayesian inference using Markov chain Monte Carlo (MCMC) sampling. We illustrate this approach using a model of generalized integrate-and-fire neurons for which mesoscopic dynamics have been previously derived and show that both single-neuron and connectivity parameters can be recovered from simulated data. In particular, our inference method extracts posterior correlations between model parameters, which define parameter subsets able to reproduce the data. We compute the Bayesian posterior for combinations of parameters using MCMC sampling and investigate how the approximations inherent in a mesoscopic population model affect the accuracy of the inferred single-neuron parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.