Combustion of solid biomass fuels for heat generation is an important renewable energy resource. The major part among biomass combustion applications is being played by small-scale systems like wood log stoves and small wood pellet burners, which account for 75% of the overall biomass heat production. Despite an environmentally friendly use of renewable energies, incomplete combustion in small-scale systems can lead to the emission of environmental pollutants as well as substances which are hazardous to health. Besides particles of ash and soot, a wide variety of gaseous substances can also be emitted. Among those, polycyclic aromatic hydrocarbons (PAH) and several organic volatile and semi-volatile compounds (VOC) are present. Heterogeneous catalysis is applied for the reduction of various gaseous compounds as well as soot. Some research has been done to examine the application of catalytic converters in small-scale biomass combustion systems. In addition to catalyst selection with respect to complete oxidation of different organic compounds, parameters such as long-term stability and durability under flue gas conditions are considered for use in biomass combustion furnaces. Possible catalytic procedures have been identified for investigation by literature and market research. Experimental studies with two selected oxidation catalysts based on noble metals have been carried out on a wood log stove with a retrofit system. The measurements have been performed under defined conditions based on practical mode of operation. The measurements have shown that the catalytic flue gas treatment is a promising method to reduce carbon monoxide and volatile organic compounds. Even a reduction of particulate matter was observed, although no filtering effect could be detected. Therefore, the oxidation of soot or soot precursors can OPEN ACCESSCatalysts 2012, 2 224 be assumed. The selected catalysts differed in their activity, depending on the compound to be oxidized. Examinations showed that the knitted wire catalyst showed better activity for the reduction of carbon monoxide, whereas the honeycomb induced a higher reduction of aromatic compounds. The properties of the two catalysts can be combined by integrating both together. The one drawback of the catalyst so far is the deactivation for the conversion of methane.
The separation of Pd and CeO2 on the inner surface of controlled porous glass (CPG, obtained from phase-separated borosilicate glass after extraction) yields long-term stable and highly active methane combustion catalysts. However, the limited availability of the CPG makes such catalysts highly expensive and limits their applicability. In this work, porous silica obtained from acid leached rice husks after calcination (RHS) was used as a sustainable, cheap and broadly available substitute for the above mentioned CPG. RHS-supported Pd-CeO2 with separated CeO2 clusters and Pd nanoparticles was fabricated via subsequent impregnation/calcination of molten cerium nitrate and different amounts of palladium nitrate solution. The Pd/CeO2/RHS catalysts were employed for the catalytic methane combustion in the temperature range of 150–500 °C under methane lean conditions (1000 ppm) in a simulated off-gas consisting of 9.0 vol% O2, and 5.5 vol% CO2 balanced with N2. Additionally, tests with 10.5 vol% H2O as co-feed were carried out. The results revealed that the RHS-supported catalysts reached the performance of the cost intensive benchmark catalyst based on CPG. The incorporation of Pd-CeO2 into RHS additionally improved water-resistance compared to solely Pd/CeO2 lowering the required temperature for methane combustion in presence of 10.5 vol% H2O to values significantly below 500 °C (T90 = 425 °C).
Kleinfeuerungsanlagen, die mit fester Biomasse betrieben werden, können in nicht unerheblichem Umfang toxische bzw. gesundheitsgefährdende Schadgase sowie Feinstaub emittieren. Eine repräsentative Auswahl der am Markt verfügbaren oder in aktuellen Forschungsprojekten in der Entwicklung befindlichen sekundären Emissionsminderungstechniken wird vorgestellt. Zurzeit ist kein System zur sekundären Emissionsminderung am Markt verfügbar, das den Ausstoß sowohl gasförmiger als auch fester bzw. kondensierter Luftschadstoffe wirksam vermindert. Eine Recherche zum Stand von Wissenschaft und Technik zeigt, dass elektrostatische Abscheider in Kombination mit der katalytischen Abgasreinigung eine aussichtsreiche sekundäre Technik darstellen. Experimentelle Arbeiten zur Untersuchung einer solchen Kombination werden vorgestellt.
Catalyst Tests on a Pilot Plant for Small Biomass Combustion SystemsIn addition to the reduction of particulate matter, a catalytic supported emission reduction in small scale biomass combustion systems can also enable a conversion of toxic organic components into carbon dioxide and water. For catalyst investigations under practical conditions a special test facility was designed. The results show that products of incomplete combustion like carbon monoxide from stoves can be reduced by catalytic processes. Further developments and studies are necessary to achieve the targeted emission limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.