The photocycle of channelrhodopsin-2 is investigated in a comprehensive study by ultrafast absorption and fluorescence spectroscopy as well as flash photolysis in the visible spectral range. The ultrafast techniques reveal an excited-state decay mechanism analogous to that of the archaeal bacteriorhodopsin and sensory rhodopsin II from Natronomonas pharaonis. After a fast vibrational relaxation of the excited-state population with 150 fs its decay with mainly 400 fs is observed. Hereby, both the initial all-trans retinal ground state and the 13-cis-retinal K photoproduct are populated. The reaction proceeds with a 2.7 ps component assigned to cooling processes. Small spectral shifts are observed on a 200 ps timescale. They are attributed to conformational rearrangements in the retinal binding pocket. The subsequent dynamics progresses with the formation of an M-like intermediate (7 and 120 μs), which decays into red-shifted states within 3 ms. Ground-state recovery including channel closing and reisomerization of the retinal chromophore occurs in a triexponential manner (6 ms, 33 ms, 3.4 s). To learn more about the energy barriers between the different photocycle intermediates, temperature-dependent flash photolysis measurements are performed between 10 and 30°C. The first five time constants decrease with increasing temperature. The calculated thermodynamic parameters indicate that the closing mechanism is controlled by large negative entropy changes. The last time constant is temperature independent, which demonstrates that the photocycle is most likely completed by a series of individual steps recovering the initial structure.
Resolution of acute inflammation is an active process coordinated by proresolving lipid mediators (SPMs) such as lipoxins (LXs) and resolvins (Rvs), which are formed by the concerted action of 2 lipoxygenases (LOs). Because the exact molecular mechanisms of SPM biosynthesis are not completely understood, we aimed to investigate LX and D-type Rv formation in human leukocytes and HEK293T cells overexpressing leukotriene (LT) pathway enzymes. Activity assays in precursor (15-hydroxyeicosatetraenoic acids, 17-HDoHE)-treated granulocytes [polymorphonuclear leukocytes (PMNLs)] showed a strict dependence of LXA 4 /RvD 1 biosynthesis on cell integrity, and incubation with recombinant human 5-LO did not lead to LX or Rv formation. Pharmacologic inhibition of 5-LO activating protein (FLAP) by MK-886 inhibited LXA 4 /RvD 1 biosynthesis in precursor-treated PMNLs (drug concentration causing 50% inhibition ∼0.3/0.2 mM), as did knockdown of the enzyme in MM6 cells, and precursor-treated HEK293T overexpressing 5-LO produced high amounts of LXA 4 only in the presence of FLAP. In addition, inhibition of cytosolic phospholipase A 2a (cPLA 2a ) interfered with LXA 4 / RvD 1 formation from exogenous precursors in PMNLs. Furthermore, inhibition of the LT synthases LTA 4 hydrolase and LTC 4 synthase in PMNL/platelet coincubations augmented LXA 4 levels. These findings show that several enzymes known to be involved in the biosynthesis of proinflammatory LTs, such as FLAP and cPLA 2a , also contribute to LX and Rv formation.-
Metabolic syndrome (MetS) is a multifactorial disease cluster that consists of dyslipidemia, cardiovascular disease, type 2 diabetes mellitus, and obesity. MetS patients are strongly exposed to polypharmacy; however, the number of pharmacological compounds required for MetS treatment can be reduced by the application of multitarget compounds. This study describes the design of dual-target ligands that target soluble epoxide hydrolase (sEH) and the peroxisome proliferator-activated receptor type γ (PPARγ). Simultaneous modulation of sEH and PPARγ can improve diabetic conditions and hypertension at once. N-Benzylbenzamide derivatives were determined to fit a merged sEH/PPARγ pharmacophore, and structure-activity relationship studies were performed on both targets, resulting in a submicromolar (sEH IC50 = 0.3 μM/PPARγ EC50 = 0.3 μM) modulator 14c. In vitro and in vivo evaluations revealed good ADME properties qualifying 14c as a pharmacological tool compound for long-term animal models of MetS.
These findings demonstrate that a novel sHE inhibitor/PPAR-γ agonist molecule targets multiple risk factors of the metabolic syndrome and is a glucose-lowering agent with a strong ability to treat diabetic complications.
1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (TPPU) is a potent soluble epoxide hydrolase (sEH) inhibitor that is used extensively in research for modulating inflammation and protecting against hypertension, neuropathic pain, and neurodegeneration. Despite its wide use in various animal disease models, the metabolism of TPPU has not been well-studied. A broader understanding of its metabolism is critical for determining contributions of metabolites to the overall safety and effectiveness of TPPU. Herein, we describe the identification of TPPU metabolites using LC-MS/MS strategies. Four metabolites of TPPU (M1–M4) were identified from rat urine by a sensitive and specific LC-MS/MS method with double precursor ion scans. Their structures were further supported by LC-MS/MS comparison with synthesized standards. Metabolites M1 and M2 were formed from hydroxylation on a propionyl group of TPPU; M3 was formed by amide hydrolysis of the 1-propionylpiperdinyl group on TPPU; and M4 was formed by further oxidation of the hydroxylated metabolite M2. Interestingly, the predicted α-keto amide metabolite and 4-(trifluoromethoxy)aniline (metabolite from urea cleavage) were not detected by the LC-MRM-MS method. This indicates that if formed, the two potential metabolites represent <0.01% of TPPU metabolism. Species differences in the formation of these four identified metabolites was assessed using liver S9 fractions from dog, monkey, rat, mouse, and human. M1, M2, and M3 were generated in liver S9 fractions from all species, and higher amounts of M3 were generated in monkey S9 fractions compared to other species. In addition, rat and human S9 metabolism showed the highest species similarity based on the quantities of each metabolite. The presence of all four metabolites were confirmed in vivo in rats over 72-h post single oral dose of TPPU. Urine and feces were major routes for TPPU excretion. M1, M4 and parent drug were detected as major substances, and M2 and M3 were minor substances. In blood, M1 accounted for ~9.6% of the total TPPU-related exposure, while metabolites M2, M3, and M4 accounted for <0.4%. All four metabolites were potent inhibitors of human sEH but were less potent than the parent TPPU. In conclusion, TPPU is metabolized via oxidation and amide hydrolysis without apparent breakdown of the urea. The aniline metabolites were not observed either in vitro or in vivo . Our findings increase the confidence in the ability to translate preclinical PK of TPPU in rats to humans and facilitates the potential clinical development of TPPU and other sEH inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.