Haemonchus contortus (Hc) is an important parasitic nematode of small ruminants. In this study we assembled the transcriptome of Hc as a model to contribute to the knowledge about the profile of the differential gene expression between two Mexican Hc strains under different anthelmintic resistance statuses, one susceptible and the other resistant to ivermectin (IVMs and IVMr, respectively), in order to improve and/or to have new strategies of control and diagnosis. The transcript sequence reads were assembled and annotated. Overall, ~127 Mbp were assembled and distributed into 77,422 transcript sequences, and 4394 transcripts of the de novo transcriptome were matched base on at least one of the following criteria: (1) Phylum Nemathelminthes and Platyhelminthes, important for animal health care, and (2) ≥55% of sequence identity with other organisms. The gene ontology (GO) enrichment analysis (GOEA) was performed to study the level of gene regulation to IVMr and IVMs strains using Log Fold Change (LFC) filtering values ≥ 1 and ≥ 2. The upregulated-displayed genes obtained via GOEA were: 1993 (for LFC ≥ 1) and 1241 (for LFC ≥ 2) in IVMr and 1929 (for LFC ≥ 1) and 835 (for LFC ≥ 2) in IVMs. The enriched GO terms upregulated per category identified the intracellular structure, intracellular membrane-bounded organelle and integral component of the cell membrane as some principal cellular components. Meanwhile, efflux transmembrane transporter activity, ABC-type xenobiotic transporter activity and ATPase-coupled transmembrane transporter activity were associated with molecular function. Responses to nematicide activity, pharyngeal pumping and positive regulation of synaptic assembly were classified as biological processes that might be involved in events related to the anthelmintic resistance (AR) and nematode biology. The filtering analysis of both LFC values showed similar genes related to AR. This study deepens our knowledge about the mechanisms behind the processes of H. contortus in order to help in tool production and to facilitate the reduction of AR and promote the development of other control strategies, such as anthelmintic drug targets and vaccines.
The nematode
Haemonchus placei
is a pathogenic parasite, the most seriously affecting ruminant’s health and being responsible for enormous economic losses all over the world. The present protocol describes different in vitro techniques to select potential candidate antigens with immune-protective activity from excretory and secretory products (ESP) from
H. placei
transitory infective larvae (xL
3
). ESP from xL
3
were obtained from the in vitro infective larvae (L
3
) maintained in Hank’s medium at 37 °C with 5% CO
2
for 48 h. Then, the presence of ESP proteins was confirmed by SDS-PAGE to be used in an in vitro proliferation assay with bovine peripheral blood mononuclear cells (PBMCs). The ESP were exposed to the PBMCs during two different periods (24 and 48 h). Genes associated with immune response against the nematode were analyzed using relative gene expression and bioinformatic tools. These are simple, economic, and helpful tools to identify potential immune-protective molecules under in vitro conditions for confirming the efficacy of future in vivo assays.
Graphical overview
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.