Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for oneparameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.
The Representation Theorem by Zomorodian and Carlsson has been the starting point of the study of persistent homology under the lens of representation theory. In this work, we give a more accurate statement of the original theorem and provide a complete and self-contained proof. Furthermore, we generalize the statement from the case of linear sequences of R-modules to R-modules indexed over more general monoids. This generalization subsumes the Representation Theorem of multidimensional persistence as a special case.
Given a finite set A ⊂ R d , let Cov r,k denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy [44]. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang [26], and can be efficiently computed using a variant of an algorithm given by these authors in [27]. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.