Gold and palladium—a unique liason: A study of the transmetalation abilities of organogold compounds builds the basis for a new class of cross‐coupling reactions. Stable intermediates of gold catalysis deliver new complex products by a palladium‐catalyzed coupling reaction. (see Scheme)
Two substrates containing an aryl iodide and an allenoate ester were prepared and the goldinduced cycloisomerisation to vinylgold(I) species and their proto-deauration as well as the intramolecular palladium-catalysed cross-coupling reactions were investigated. Switching to catalytic amounts of gold and palladium and stoichiometric amounts of silver did indeed furnish the product of a cycloisomerisation/intramolecular cross-coupling. Control experiments revealed that silver cannot substitute for gold or palladium in these reactions, but a different palladium catalyst in a different oxidation state also afforded the cycloisomerisation/intramolecular crosscoupling products in only slightly reduced yields. By ICP analysis the palladium was shown to contain gold only at the sub-ppm level. This shows how carefully results obtained with such systems have to be interpreted. Then a series of allylic and benzylic o-alkynylbenzoates were investigated in gold-and palladium-catalysed reactions. For esters of benzyl alcohol and cinnamyl alcohol no palladium co-catalyst was needed for the conversion. All reagents were thoroughly checked for palladium traces by ICP analysis in order to thoroughly exclude a gold/palladium cocatalysis. Optimisation of the gold complex, counter ion and solvent showed that gold(I) isonitrile precatalysts and silver triflate as activator in dioxane are suitable to convert a number of substrates with aryl, alkyl and even cyclopropyl substituents. Crossover experiments proved an intermolecular allyl transfer.
Five different alkenylgold(I) phosphane complexes were prepared and then investigated in [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride-catalyzed cross-coupling reactions with different aryl halides, heterocyclic halides, an alkenyl halide, an alkynyl halide, allylic substrates, benzyl bromide and an acid chloride. With regard to the halides, the iodides were highly reactive, bromides or chlorides gave significantly reduced yields or failed, allylic acetates failed, too. The cross-coupling partners contained a number of different functional groups, while free carboxylic acids did not deliver cross-coupling products and o,o-disubstituted arenes failed as well, a broad range of other functional groups like nitro groups, nitrile groups, ester groups, a,b-unsaturated ester groups and lactones, aldehydes, alkoxy groups, pyridyl groups, thienyl groups, unprotected phenols and anilines, even aryl azides were tolerated. The structures of one alkenylgold(I) species and of four of the cross-coupling products were proved by crystal structure analyses.
Gold und Palladium: eine einzigartige Liaison. Eine Studie der Transmetallierungsfähigkeit von Organogold‐Verbindungen bildet die Grundlage für eine neue Klasse von Kreuzkupplungen. Stabile Zwischenstufen der Gold‐Katalyse führen durch Palladium‐katalysierte Kupplungsreaktionen zu neuen, komplexen Produkten (Beispiel siehe Schema).
In a systematic study of the Au‐catalyzed reaction of o‐alkynylphenols with aryldiazonium salts, we find that essentially the same reaction conditions lead to a change in mechanism when a light source is applied. If the reaction is carried out at room temperature using a AuI catalyst, the diazonium salt undergoes electrophilic deauration of a vinyl AuI intermediate and provides access to substituted azobenzofurans. If the reaction mixture is irradiated with blue LED light, C−C bond formation due to N2‐extrusion from the diazonium salt is realized selectively, using the same starting materials without the need for an additional photo(redox) catalyst under aerobic conditions. We report a series of experiments demonstrating that the same vinyl AuI intermediate is capable of producing the observed products under photolytic and thermal conditions. The finding that a vinyl AuI complex can directly, without the need for an additional photo(redox) catalyst, result in C−C bond formation under photolytic conditions is contrary to the proposed mechanistic pathways suggested in the literature till date and highlights that the role of oxidation state changes in photoredox catalysis involving Au is thus far only poorly understood and may hold surprises for the future. Computational results indicate that photochemical activation can occur directly from a donor–acceptor complex formed between the vinyl AuI intermediate and the diazonium salt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.