We apply Dykstra's alternating projection algorithm to the constrained least‐squares matrix problem that arises naturally in statistics and mathematical economics. In particular, we are concerned with the problem of finding the closest symmetric positive definite bounded and patterned matrix, in the Frobenius norm, to a given matrix. In this work, we state the problem as the minimization of a convex function over the intersection of a finite collection of closed and convex sets in the vector space of square matrices.
We present iterative schemes that exploit the geometry of the problem, and for which we establish convergence to the unique solution. Finally, we present preliminary numberical results to illustrate the performance of the proposed iterative methods.
We apply Dykstra's alternating projection algorithm to the constrained least-squares matrix problem that arises naturally in statistics and mathematical economics. In particular, we are concerned with the problem of finding the closest symmetric positive definite bounded and patterned matrix, in the Frobenius norm, to a given matrix. In this work, we state the problem as the minimization of a convex function over the intersection of a finite collection of closed and convex sets in the vector space of square matrices.We present iterative schemes that exploit the geometry of the problem, and for which we establish convergence to the unique solution. Finally, we present preliminary numerical results to illustrate the performance of the proposed iterative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.