Artículo de publicación ISIThe harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people
Aim Invasive alien species (IAS) are recognized as major drivers of biodiversity loss, but few causal relationships between IAS and species declines have been documented. In this study, we compare the distribution (Belgium and Britain) and abundance (Belgium, Britain and Switzerland) of formerly common and widespread native ladybirds before and after the arrival of Harmonia axyridis, a globally rapidly expanding IAS. Location EuropeMethods We used generalized linear mixed-effects models (GLMMs) to assess the distribution trends of eight conspicuous and historically widespread and common species of ladybird within Belgium and Britain before and after the arrival of H. axyridis. The distribution data were collated largely through public participatory surveys but verified by a recognized expert. We also used GLMMs to model trends in the abundance of ladybirds using data collated through systematic surveys of deciduous trees in Belgium, Britain and Switzerland.Results Five (Belgium) and seven (Britain) of eight species studied show substantial declines attributable to the arrival of H. axyridis. Indeed, the two-spot ladybird, Adalia bipunctata, declined by 30% (Belgium) and 44% (Britain) over 5 years after the arrival of H. axyridis. Trends in ladybird abundance revealed similar patterns of declines across three countries.Main conclusion Together, these analyses show H. axyridis to be displacing native ladybirds with high niche overlap, probably through predation and competition. This finding provides strong evidence of a causal link between the arrival of an IAS and decline in native biodiversity. Rapid biotic homogenization at the continental scale could impact on the resilience of ecosystems and severely diminish the services they deliver.
The invasive spotted wing drosophila Drosophila suzukii, a fruit fly of Asian origin, is a major pest of a wide variety of berry and stone fruits in Europe. One of the characteristics of this fly is its wide host range. A better knowledge of its host range outside cultivated areas is essential to develop sustainable integrated pest management strategies. Field surveys were carried out during two years in Italy, the Netherlands and Switzerland. Fruits of 165 potential host plant species were collected, including mostly wild and ornamental plants. Over 24,000 D. suzukii adults emerged from 84 plant species belonging to 19 families, 38 of which being non-native. Forty-two plants were reported for the first time as hosts of D. suzukii. The highest infestations were found in fruits of the genera Cornus, Prunus, Rubus, Sambucus and Vaccinium as well as in Ficus carica, Frangula alnus, Phytolacca americana and Taxus baccata. Based on these data, management methods are suggested. Ornamental and hedge plants in the vicinity of fruit crops and orchards can be selected according to their susceptibility to D. suzukii. However, the widespread availability and abundance of non-crop hosts and the lack of efficient native parasitoids suggest the need for an area-wide control approach.
Substantial progress has been made in understanding how pathways underlie and mediate biological invasions. However, key features of their role in invasions remain poorly understood, available knowledge is widely scattered, and major frontiers in research and management are insufficiently characterized. We review the state of the art, highlight recent advances, identify pitfalls and constraints, and discuss major challenges in four broad fields of pathway research and management: pathway classification, application of pathway information, management response, and management impact. We present approaches to describe and quantify pathway attributes (e.g., spatiotemporal changes, proxies of introduction effort, environmental and socioeconomic contexts) and how they interact with species traits and regional characteristics. We also provide recommendations for a research agenda with particular focus on emerging (or neglected) research questions and present new analytical tools in the context of pathway research and management.
Summary1. Recent changes in European agricultural policy have led to measures to reverse the loss of species-rich grasslands through the creation of new areas on ex-arable land. Ex-arable soils are often characterized by high inorganic nitrogen (N) levels, which lead to the rapid establishment of annual and fast-growing perennial species during the initial phase of habitat creation. The addition of carbon (C) to the soil has been suggested as a countermeasure to reduce plant-available N and alter competitive interactions among plant species. 2. To test the effect of C addition on habitat creation on ex-arable land, an experiment was set up on two recently abandoned fields in Switzerland and on two 6-year-old restoration sites in the UK. Carbon was added as a mixture of either sugar and sawdust or wood chips and sawdust during a period of 2 years. The effects of C addition on soil parameters and vegetation composition were assessed during the period of C additions and 1 year thereafter. 3. Soil nitrate concentrations were reduced at all sites within weeks of the first C addition, and remained low until cessation of the C additions. The overall effect of C addition on vegetation was a reduction in above-ground biomass and cover. At the Swiss sites, the addition of sugar and sawdust led to a relative increase in legume and forb cover and to a decrease in grass cover. The soil N availability, composition of soil micro-organisms and vegetation characteristics continued to be affected after cessation of C additions. 4. Synthesis and applications . The results suggest that C addition in grassland restoration is a useful management method to reduce N availability on ex-arable land. Carbon addition alters the vegetation composition by creating gaps in the vegetation that facilitates the establishment of late-seral plant species, and is most effective when started immediately after the abandonment of arable fields and applied over several years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.