The authors report a presenilin 1 (PSEN1) mutation (L113P) in a family with six cases of dementia. The patients had personality changes and behavioral disorders, whereas spatial orientation and praxis were preserved late in the course of the illness. Neuroimaging features were consistent with the diagnosis of frontotemporal dementia. The authors conclude that PSEN1 mutations can be associated with clinical features of frontotemporal dementia.
Abnormality in the P50 auditory-evoked potential gating is an endophenotype associated with schizophrenia. Biochemical and genetic studies have suggested that the alpha 7 nicotinic acetylcholine receptor (nAChR) is involved in this sensory gating deficit. Two related alpha 7 genes (CHRNA7 and CHRNA7-like gene) resulting from a partial duplication (from exon 5 to exon 10) are present in the human genome. Two types of genetic variation, a large deletion and a −2 base-pair deletion in exon 6 resulting in a truncation of the open reading frame, affect specifically the CHRNA7-like gene. We developed a simple multiplex PCR assay on genomic DNA, allowing the quantification of the number of exons 6 and the distinction of all possible exon 6 genotypes. Genotyping of 70 schizophrenic patients and 77 controls showed that carrying at least one −2 bp deletion of exon 6 did not constitute a risk factor for schizophrenia. In contrast, the distribution of genotypes differed significantly between subjects with normal and abnormal P50 ratios, with an over-representation of genotypes carrying at least one −2 bp deletion of exon 6 among subjects exhibiting an abnormal P50 ratio. We thus conclude that the −2 bp deletion within the CHRNA7-like gene is a risk factor for P50 sensory gating deficit. Interestingly, most of the effect came from the non schizophrenic group, which may suggest that in schizophrenic patients other risk factors account for the large proportion of subjects exhibiting an abnormal P50 ratio.
The biopharmaceutical industry is evolving in response to changing market conditions, including increasing competition and growing pressures to reduce costs. Single-use (SU) technologies and continuous bioprocessing have attracted attention as potential facilitators of cost-optimized manufacturing for monoclonal antibodies. While disposable bioprocessing has been adopted at many scales of manufacturing, continuous bioprocessing has yet to reach the same level of implementation. In this study, the cost of goods of Pall Life Science's integrated, continuous bioprocessing (ICB) platform is modeled, along with that of purification processes in stainless-steel and SU batch formats. All three models include costs associated with downstream processing only. Evaluation of the models across a broad range of clinical and commercial scenarios reveal that the cost savings gained by switching from stainless-steel to SU batch processing are often amplified by continuous operation. The continuous platform exhibits the lowest cost of goods across 78% of all scenarios modeled here, with the SU batch process having the lowest costs in the rest of the cases. The relative savings demonstrated by the continuous process are greatest at the highest feed titers and volumes. These findings indicate that existing and imminent continuous technologies and equipment can become key enablers for more cost effective manufacturing of biopharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.