In this paper we present a privacy-aware method for estimating source-dominated microphone clusters in the context of acoustic sensor networks (ASNs). The approach is based on clustered federated learning which we adapt to unsupervised scenarios by employing a light-weight autoencoder model. The model is further optimized for training on very scarce data. In order to best harness the benefits of clustered microphone nodes in ASN applications, a method for the computation of cluster membership values is introduced. We validate the performance of the proposed approach using clustering-based measures and a network-wide classification task.
In this paper we present a privacy-aware method for estimating source-dominated microphone clusters in the context of acoustic sensor networks (ASNs). The approach is based on clustered federated learning which we adapt to unsupervised scenarios by employing a light-weight autoencoder model. The model is further optimized for training on very scarce data. In order to best harness the benefits of clustered microphone nodes in ASN applications, a method for the computation of cluster membership values is introduced. We validate the performance of the proposed approach using clustering-based measures and a network-wide classification task.
In this paper we introduce a realistic and challenging, multi-source and multi-room acoustic environment and an improved algorithm for the estimation of source-dominated microphone clusters in acoustic sensor networks. Our proposed clustering method is based on a single microphone per node and on unsupervised clustered federated learning which employs a light-weight autoencoder model. We present an improved clustering control strategy that takes into account the variability of the acoustic scene and allows the estimation of a dynamic range of clusters using reduced amounts of training data. The proposed approach is optimized using clustering-based measures and validated via a network-wide classification task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.