ZusammenfassungMachine Learning ist ein Forschungsfeld mit großen Potenzialen und weitreichenden Anwendungspotenzialen. Big Data kann dabei als Enabler angesehen werden, da große und qualitativ hochwertige Daten stets die Grundlage für erfolgreiche Machine Learning-Algorithmen und -Modelle darstellen. Aktuell gibt es noch keinen voll etablierten Standardprozess für den Machine Learning-Life Cycle, wie es im Data Mining mit dem CRISP-DM beispielsweise der Fall ist, was zur Folge hat, dass gerade die Operationalisierung von Machine Learning-Modellen Unternehmen vor große Herausforderungen stellen kann. In diesem Beitrag werden anhand der Sicht auf die Beschaffenheit der Daten, die verschiedenen Rollen in Machine Learning-Teams und den Lebenszyklus von Machine Learning-Modellen Implikationen für das Datenmanagement in Unternehmen herausgearbeitet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.