SUMMARY:Trophoblasts of the human placenta differentiate along two pathways to give either extravillous cytotrophoblasts (EVCT) with invasive properties and that are implicated in the implantation process, or villous cytotrophoblasts (VCT) that by cell fusion form multinucleated syncytiotrophoblasts. We report the first isolation and purification of these two cell types from the same chorionic villi of first trimester human placenta. We also studied their differentiation in vitro. Electron microscopy showed that in contrast to VCT, EVCT had no microvilli but contained large fibrinoid inclusions. EVCT cultures required a matrix to invade, and as previously established, VCT cultured on plastic dishes aggregated and fused to form syncytiotrophoblasts. These differentiation processes were characterized by a particular pattern of gene expression as assessed by real-time PCR and confirmed by immunocytochemical analysis of the corresponding proteins. EVCT cultured in vitro expressed high levels of HLA-G, c-erbB2, human placental lactogen, and very little human chorionic gonadotropin. Interestingly, TGF2 was a marker of EVCT in vitro and in situ. These data offer a new tool for cell biologists to study the molecular mechanisms involved in human placental development and its pathology. (Lab Invest 2001, 81:1199 -1211.
Traumatic brain injury (TBI) results in white matter injury (WMI) that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i) neuroinflammation, (ii) WMI and (iii) behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i) For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii) Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii) TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model of mild TBI. This model could help to validate a pharmacological strategy to prevent post-traumatic WMI and behavioral disorders following mild TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.