Inflammatory bowel diseases (IBDs) are a group of chronic autoinflammatory diseases including Crohn’s disease and ulcerative colitis. Although the molecular mechanisms governing the pathogenesis of gastrointestinal inflammation are not completely clear, the main factors are presumed to be genetic predisposition, environmental exposure, and the intestinal microbiome. Hitherto, most of the studies focusing on the role of the microbiome studied the action and effect of bacteria. However, the intestinal microbiome comprises other members of the microbial community as well, namely, fungi, protozoa, and viruses. We believe that bacteriophages are among the main orchestrators of the effect of microbiota on the gut mucosa. Therefore, this review aims to summarize the knowledge of the role of intestinal phageome in IBD and to discuss the concept of phage therapy and its future applications.
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases of the gastrointestinal tract, encompassing two main disorders: Crohn's disease (CD) and ulcerative colitis (UC). In both these pathologies, excessive and local immune response against luminal antigens promotes a pathological process leading to various degrees of gut damage. Matrix metalloproteinases (MMPs) are a family of neutral proteases with the ability to degrade all components of extracellular matrix. In physiological conditions, MMPs are produced at very low level and generally in the latent form and are involved in the normal tissue turnover. Their function is inhibited by tissue inhibitors of metalloproteinases (TIMPs). However, in inflamed tissue of IBD patients, MMPs are produced in excess and/or the activity of TIMPs is not sufficient to block MMPs, thereby making a major contribution to the IBD-related mucosal degradation. In this review, we summarize the available evidence on the expression and role of MMPs in IBD.
The human virome, which is a collection of all the viruses that are present in the human body, is increasingly being recognized as an essential part of the human microbiota. The human gastrointestinal tract and related organs (e.g., liver, pancreas, and gallbladder)—composing the gastrointestinal (or digestive) system—contain a huge number of viral particles which contribute to maintaining tissue homeostasis and keeping our body healthy. However, perturbations of the virome steady-state may, both directly and indirectly, ignite/sustain oncogenic mechanisms contributing to the initiation of a dysplastic process and/or cancer progression. In this review, we summarize and discuss the available evidence on the association and role of viruses in the development of cancers of the digestive system.
Endothelial dysfunction is considered an early marker of atherosclerosis. Herein, we address the molecular mechanisms affecting endothelium remodeling in disease. Vascular calcification is highly prevalent in patients with ischemic cardiovascular disease, cerebrovascular disorder, and renal failure, being a common feature in aging, diabetes, dyslipidemia, abnormal valve biomechanics, end‐stage renal disease and atherosclerosis, a major cause of mortality and morbidity. Oxidative stress promotes calcification of vascular smooth muscle cells (SMC) by increasing osteogenic transcription factors expression and activity in atherosclerotic plaques. Various markers of osteogenic differentiation are expressed by SMC in calcified atherosclerotic lesions. Interestingly, decreased levels of some bone factors and microRNAs accelerate vascular calcification and injured tissue regeneration. Another key player in endothelial remodeling is amino acids metabolism. Branched‐chain amino acids are catabolized in several nonhepatic tissues including cardiac muscle. Immune activation and inflammation in cardiovascular disease patients associate with higher phenylalanine/tyrosine ratios. Understanding the whole process that underlies endothelium dysfunction is of paramount importance for the development of new therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.