There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.
Coastal ecosystems lie at the forefront of sea level rise. We posit that before the onset of actual inundation, sea level rise will influence the species composition of coastal hardwood hammocks and buttonwood (Conocarpus erectus L.) forests of the Everglades National Park based on tolerance to drought and salinity. Precipitation is the major water source in coastal hammocks and is stored in the soil vadose zone, but vadose water will diminish with the rising water table as a consequence of sea level rise, thereby subjecting plants to salt water stress. A model is used to demonstrate that the constraining effect of salinity on transpiration limits the distribution of freshwater-dependent communities. Field data collected in hardwood hammocks and coastal buttonwood forests over 11 years show that halophytes have replaced glycophytes. We establish that sea level rise threatens 21 rare coastal species in Everglades National Park and estimate the relative risk to each Climatic Change (2011) 107:81-108 species using basic life history and population traits. We review salinity conditions in the estuarine region over 1999-2009 and associate wide variability in the extent of the annual seawater intrusion to variation in freshwater inflows and precipitation. We also examine species composition in coastal and inland hammocks in connection with distance from the coast, depth to water table, and groundwater salinity. Though this study focuses on coastal forests and rare species of South Florida, it has implications for coastal forests threatened by saltwater intrusion across the globe.
Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth's climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface. T he coastal interface, where the land and ocean realms meet (e.g., estuaries, tidal wetlands, tidal rivers, continental shelves, and shorelines), is home to some of the most biologically and geochemically active and diverse systems on Earth 1. Although this interface only represents a small fraction of the Earth's surface, it supports a large suite of ecosystem services,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.