Abstract. Recent progress in the understanding of the effect of electrostatics in soft matter is presented. A vast amount of materials contains ions ranging from the molecular scale (e.g., electrolyte) to the meso/macroscopic one (e.g., charged colloidal particles or polyelectrolytes). Their (micro)structure and physicochemical properties are especially dictated by the famous and redoubtable long-ranged Coulomb interaction. In particular theoretical and simulational aspects, including the experimental motivations, will be discussed.
We report a mechanism which can lead to long-range attractions between like-charged spherical macroions, stemming from the existence of metastable ionized states. We show that the ground state of a single highly charged colloid plus a few excess counterions is overcharged. For the case of two highly charged macroions in their neutralizing divalent counterion solution we demonstrate that, in the regime of strong Coulomb coupling, the counterion clouds are very likely to be unevenly distributed, leading to one overcharged and one undercharged macroion. This long-living metastable configuration in turn leads to a long-range Coulomb attraction.
The effects of image charges (i.e., induced surface charges of polarization)
in spherical geometry and their implication for charged colloidal systems are
investigated. We study analytically and exactly a single microion interacting
with a dielectric sphere and discuss the similarities and discrepancies with
the case of a planar interface. By means of extensive Monte Carlo (MC)
simulations, we study within the framework of the primitive model the effects
of image charges on the structure of the electrical double layer. Salt-free
environment as well as salty solutions are considered. A remarkable finding of
this study is that the position of the maximum in the counterion density
(appearing at moderately surface charge density) remains quasi-identical,
regardless of the counterion valence and the salt content, to that obtained
within the \textit{single}-counterion system.Comment: 14 pages, 12 figures, RevTeX4, to appear in J. Chem. Phy
We investigate spherical macroions in the strong Coulomb coupling regime within the primitive model in salt-free environment. We first show that the ground state of an isolated colloid is naturally overcharged by simple electrostatic arguments illustrated by the Gillespie rule. We furthermore demonstrate that in the strong Coulomb coupling this mechanism leads to ionized states and thus to long range attractions between like-charged spheres. We use molecular dynamics simulations to study in detail the counterion distribution for one and two highly charged colloids for the ground state as well as for finite temperatures. We compare our results in terms of a simple version of a Wigner crystal theory and find excellent qualitative and quantitative agreement.
The phase diagram of crystalline bilayers of particles interacting via a Yukawa potential is calculated for arbitrary screening lengths and particle densities. Staggered rectangular, square, rhombic, and triangular structures are found to be stable including a first-order transition between two different rhombic structures. For varied screening length at fixed density, one of these rhombic phases exhibits both a single and even a double reentrant transition. Our predictions can be verified experimentally in strongly confined charged colloidal suspensions or dusty plasma bilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.