We report self-similar properties of periodic structures remarkably organized in the two-parameter space for a two-gene system, described by two-dimensional symmetric map. The map consists of difference equations derived from the chemical reactions for gene expression and regulation. We characterize the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows, denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues, and period multiple-of-three windows for shrimps.
Although literature presents several alternatives, an approach based on the electronic analogy was still not considered for the implementation of an inductor-free realization of the double scroll Chua's circuit. This paper presents a new inductor-free configuration of the Chua's circuit based on the electronic analogy. This proposal results in a versatile and functional inductorless implementation of the Chua's circuit that offers new and interesting features for several applications. The analogous circuit is implemented and used to perform an experimental mapping of a large variety of attractors.
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents.
In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have periodicity and pattern similar to stable and unstable periodic orbits already existent for the unperturbed oscillator. These features indicate that the reported replicate periodic windows are associated with chaos control of the considered oscillators.
We study the Kuramoto-Sakaguchi (KS) model composed by any N identical phase oscillators symmetrically coupled. Ranging from local (one-to-one, R = 1) to global (all-to-all, R = N/2) couplings, we derive the general solution that describes the network dynamics next to an equilibrium. Therewith we build stability diagrams according to N and R bringing to the light a rich scenery of attractors, repellers, saddles, and non-hyperbolic equilibriums. Our result also uncovers the obscure repulsive regime of the KS model through bifurcation analysis. Moreover, we present numerical evolutions of the network showing the great accordance with our analytical one. The exact knowledge of the behavior close to equilibriums is a fundamental step to investigate phenomena about synchronization in networks. As an example, at the end we discuss the dynamics behind chimera states from the point of view of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.