Among patients with previously untreated follicular lymphoma, efficacy results were similar with rituximab plus lenalidomide and rituximab plus chemotherapy (with both regimens followed by rituximab maintenance therapy). The safety profile differed in the two groups. (Funded by Celgene; RELEVANCE ClinicalTrials.gov numbers, NCT01476787 and NCT01650701 , and EudraCT number, 2011-002792-42 .).
Axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) have both demonstrated impressive clinical activity in relapsed/refractory (R/R) diffuse large B cell lymphoma (DLBCL). In this study, we analyzed the outcome of 809 patients with R/R DLBCL after two or more previous lines of treatment who had a commercial chimeric antigen receptor (CAR) T cells order for axi-cel or tisa-cel and were registered in the retrospective French DESCAR-T registry study (NCT04328298). After 1:1 propensity score matching (n = 418), the best overall response rate/complete response rate (ORR/CRR) was 80%/60% versus 66%/42% for patients treated with axi-cel compared to tisa-cel, respectively (P < 0.001 for both ORR and CRR comparisons). After a median follow-up of 11.7 months, the 1-year progression-free survival was 46.6% for axi-cel and 33.2% for tisa-cel (hazard ratio (HR) = 0.61; 95% confidence interval (CI), 0.46–0.79; P = 0.0003). Overall survival (OS) was also significantly improved after axi-cel infusion compared to after tisa-cel infusion (1-year OS 63.5% versus 48.8%; HR = 0.63; 95% CI, 0.45–0.88; P = 0.0072). Similar findings were observed using the inverse probability of treatment weighting statistical approach. Grade 1–2 cytokine release syndrome was significantly more frequent with axi-cel than with tisa-cel, but no significant difference was observed for grade ≥3. Regarding immune effector cell-associated neurotoxicity syndrome (ICANS), both grade 1–2 and grade ≥3 ICANS were significantly more frequent with axi-cel than with tisa-cel. In conclusion, our matched comparison study supports a higher efficacy and also a higher toxicity of axi-cel compared to tisa-cel in the third or more treatment line for R/R DLBCL.
110 Background: Mantle Cell Lymphoma (MCL) has been characterized by poor long term prognosis with a median survival of only 3 to 4 years. However, outcome has improved during the last decades. In its first randomized trial, the MCL net demonstrated that myeloablative consolidation followed by ASCT resulted in a significant prolongation of PFS in advanced stage MCL (Dreyling et al Blood 2005). Recent phase II studies suggested that the addition of rituximab to CHOP like chemotherapy and/or high dose ARA-C may significantly improve remission rates and PFS. A French phase II trial using sequential R-CHOP/R-DHAP followed by ASCT showed an overall response rate of 95% with a CR rate of 61% translating into a median EFS of 83 months and a 75% survival rate at 5 years (Delarue et al ASH 2008). Methods: To evaluate the potential superiority of a high dose ARA-C containing regimen, the MCL net initiated a randomized trial comparing 6 courses of CHOP plus Rituximab followed by myeloablative radiochemotherapy (12 Gray TBI, 2×60mg/kg Cyclophosphamide) and ASCT (control arm A) versus alternating courses of 3x CHOP and 3x DHAP plus Rituximab followed by a high dose ARA-C containing myeloablative regimen (10 Gray TBI, 4×1,5 g/m2 Ara-C, 140mg/m2 melphalan) and ASCT (experimental arm B). Patient eligibility criteria included previously untreated MCL stage II-IV up to the age of 65 years. Histological diagnosis was confirmed by a central pathology review board. The primary end point time to treatment failure (TTF) was monitored continuously by a sequential procedure based on a one sided triangular test. Stable disease after induction, progression or death from any causes, were considered as treatment failure. Sample size was calculated to detect a hazard ratio of 52% for arm B with a power of 95%. Randomization was stopped as soon as a significant difference was observed between the two arms. Results: From July 2004 to May 2010, 497 patients were randomized in 4 countries (Germany, France, Poland, Belgium). The 391 patients evaluable for the primary analysis (19 no MCL, 87 not yet documented) displayed similar characteristics in both treatment arms: median age 55 vs 56 years, male 78% vs 79%, stage IV 85% vs 79%, B symptoms 43% vs 33%, ECOG >2 5% vs 5%, elevated LDH 37% vs 38%, and MIPI low/int/high risk 61%/25%/14% vs 62%/23%/15%, respectively. After induction overall response was similarly high in both arms (A: 90% vs B: 94%; p=0.19) and CR rate and combined CR/CRu rate were significantly higher in arm B (26% vs 39%; p=0.012 and 41% vs 60%; p=0.0003). The number of patients transplanted was similar in both arms (72% vs 73%) and after transplantation overall response and CR rates were comparable in both arms (97% vs 97% and 63% vs 65%, respectively). After a median follow up of 27 months, patients in arm B experienced a significantly longer TTF (49 months vs NR; p=0.0384, hazard ratio 0.68) mainly due to a lower number of relapses after CR/CRu/PR (20% vs 10%), whereas the rate of ASCT-related deaths in remission was similar in both arms (3% vs 4%). Although CR rate after ASCT was comparable in both arms, remission duration (RD) after ASCT was superior in Arm B (48m vs NR; p=0.047). Interestingly, for patients in CR after ASCT, RD after ASCT was also presumably superior in arm B (51 months vs NR; p=0.077). At the time of analysis overall survival was similar in both arms with medians not reached and 79% vs. 80% survival rates at 3 years (p=0.74). Safety after induction was comparable in both arms except for an increased grade 3/4 hematological toxicity (Hb 8% vs 28%, WBC 48% vs 75%, platelets 9% vs 74%, respectively), an excess of renal toxicity (creatinine grade 1/2: 8% vs 38%, grade 3/4: none vs 2%), and more frequent grade 1/2 nausea and vomiting in arm B. Toxicities of both conditioning regimen were similar, except for higher grade 3/4 mucositis (43% vs. 61%) in Arm B, and higher grade 1/2 liver toxicity and constipation in Arm A. Conclusions: High dose ARA-C in addition to R-CHOP+ASCT increases significantly complete response rates and TTF without clinically relevant increase of toxicity. Therefore, induction regimen containing high dose ARA-C followed by ASCT should become the new standard of care of MCL patients up to 65 years. Disclosures: Walewski: Roche: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Stilgenbauer:Amgen: Research Funding; Bayer: Consultancy, Honoraria, Research Funding; Boehringer-Ingelheim: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Genzyme: Consultancy, Honoraria, Research Funding; GSK: Consultancy, Honoraria, Research Funding; Mundipharma: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria, Research Funding; Sanofi Aventis: Research Funding. Feugier:roche: Consultancy, Honoraria. Bosly:Roche: Membership on an entity's Board of Directors or advisory committees. Gisselbrecht:Roche: Research Funding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.