We conducted a lactation trial with a fresh forage diet in order to evaluate 1) the effects of monensin on nitrogen metabolism, and 2) the Cornell Net Carbohydrate and Protein System (CNCPS). Thirty Holstein cows in midlactation (eight fitted with ruminal fistulas) were gradually introduced to a fresh forage diet. A concentrate mix based on corn meal was fed before the a.m. and p.m. milking times 0730 and 1730 h, then the fresh forage was fed at 0830 and 1830 h. Fifteen cows each were allocated to a control (no monensin) and a treatment group receiving 350 mg/cow per day of monensin in the p.m. concentrate feeding. A 7-d fecal and urine collection period and a 3-d rumen sampling period were conducted with the fistulated cows. After the lactation study was concluded, the fistulated cows were fed forage regrowth and a 3-d rumen sampling period was repeated. Monensin increased milk production by 1.85 kg. Milk fat and protein concentrations decreased and milk fat and protein yields increased, but the effects were nonsignificant. Monensin did not significantly affect DMI. Ruminal ammonia and the acetate-to-propionate ratio decreased with the addition of monensin in both fed forages. Monensin decreased fecal N output, and increased apparent N digestibility by 5.4%. Because of the decrease in ruminal ammonia and increase in apparent N digestibility, we concluded monensin was sparing amino acids from wasteful rumen degradation with a fresh forage diet. The precision of the CNCPS in predicting performance was high (r2 = 0.76), and the bias was low (overprediction of 3.6%). These results indicate that the CNCPS can be used for dairy cows consuming fresh forage and gives realistic predictions of performance.
High cation diets can cause milk fever in dairy cows as they induce a metabolic alkalosis reducing the ability of the cow to maintain calcium homeostasis at the onset of lactation. Adding anions to the diet can offset the effect of the high cation forages by inducing a mild metabolic acidosis, restoring the ability to maintain calcium homeostasis. The difference in mEq of dietary cations and anions (DCAD) is most often expressed as (Na(+) + K+) - (Cl- + S(--)). This equation implies that a mEq of chloride and a mEq of sulfate are equipotent in their ability to alter acid-base balance of the cow. Using blood and urine pH to monitor effects on acid-base balance, experiments were conducted to test the relative acidifying activity of various sulfate and chloride anion sources in nonpregnant, nonlactating Jersey cows. Across all experiments, chloride proved to have about 1.6 times the acidifying activity of sulfate. Calcium and magnesium, ignored by the common DCAD equation, had a small but significant alkalinizing effect when accompanying chloride or sulfate. The ranking of the anion sources tested at a dose of 2 Eq/d, from most to least potent urine acidifier, was hydrochloric acid, ammonium chloride, calcium chloride, calcium sulfate, magnesium sulfate, and sulfur. These data should allow more accurate prediction of the response of late gestation cows to dietary cation-anion manipulation.
Twenty-four multiparous and fifteen first lactation Holstein cows averaging 263 days in milk and weighing 614 kg were fed diets adequate or deficient in ruminal nitrogen (N), based on predictions of the Cornell Net Carbohydrate and Protein System (CNCPS). After adjustment to a low crude protein (CP) total mixed rations (TMR; 12.6% CP), the cows were allocated to 13 blocks based on lactation number, milk production, body condition score, and body weight. Within each block, cows were randomly assigned to one of the 3 treatment (TRT) diets (9.4, 11.1 and 14.1% CP for TRT 1, 2, and 3, respectively). All diets contained the same proportion of high moisture corn, chopped grass hay, and minerals, with urea substituted for corn silage as needed to reach the three CP levels. The TRT diets were then fed to the cows for 4 wk. Milk production was significantly affected by TRT: 15.5, 18.8, and 21.7 kg/d for TRT diets 1, 2, and 3, respectively. DMI was increased significantly as the percentage of CP increased from 9.4 to 14.1% CP: 17.6, 20.0, and 21.2 kg/d for TRT diets 1,2, and 3, respectively. CNCPS predictions for production (with and without the N adjustment for ruminal N deficiency) of metabolizable protein (MP) allowable milk were compared with observed milk production. Using the average individual weekly cow data from all 3 TRT, we found that the CNCPS accounted for 72 and 68% of the variation in MP allowable milk without and with the N deficiency adjustment, respectively. The overall mean bias without the N adjustment was 3.3 kg of milk (over prediction model bias of 14.6%, P < 0.001), and the N adjustment reduced the model over-prediction bias to 0.01 kg of milk (P = 0.96).
Regulatory T cells are a population of CD4+ T cells that play a critical role in peripheral tolerance and control of immune responses to pathogens. The purpose of this study was to measure the percentages of two different regulatory T cells subpopulations, identified by the presence or absence of CD31 (Recent thymic emigrants and peripherally induced naïve regulatory T cells), in term and preterm infant cord blood. We report the association of prenatal factors, intrauterine exposure to lipopolysaccharide and inflammation and the percentages of these regulatory T cell subpopulations in term and preterm infants. Cord blood samples were collected from both term and preterm infants and mononuclear cells isolated over a Ficoll-Hypaque cushion. Cells were then stained with fluorochrome-labeled antibodies to characterize regulatory T cell populations and analyzed with multi-color flow cytometry. Cord blood plasma C-reactive protein, and lipopolysaccharide were also measured. Placental pathology was also examined. We report a gestational age-dependent difference in the percentage of total regulatory T cells, in which preterm infants of lower gestational ages have an increased percentage of regulatory T cells. We report the presence of two populations of regulatory T cells (CD31+ and CD31-) in cord blood of term and preterm infants and their association with different maternal and fetal characteristics. Factors associated with differences in the percentage of CD31- Tregs included the use of prenatal antibiotics, steroids and magnesium sulfate. In addition, the percentage of CD31- Tregs was significantly higher in cord blood of preterm pregnancies associated with inflammation and prenatal lipopolysaccharide exposure. The peripheral Treg pool of preterm infants could be altered by prenatal exposure to inflammation and chorioamnionitis; however, the clinical implications of this finding are not yet understood.
Current ration formulation systems used to formulate diets on farms and to evaluate experimental data estimate metabolizable energy (ME)-allowable and metabolizable protein (MP)-allowable milk production from the intake above animal requirements for maintenance, pregnancy, and growth. The changes in body reserves, measured via the body condition score (BCS), are not accounted for in predicting ME and MP balances. This paper presents 2 empirical models developed to adjust predicted diet-allowable milk production based on changes in BCS. Empirical reserves model 1 was based on the reserves model described by the 2001 National Research Council (NRC) Nutrient Requirements of Dairy Cattle, whereas empirical reserves model 2 was developed based on published data of body weight and composition changes in lactating dairy cows. A database containing 134 individually fed lactating dairy cows from 3 trials was used to evaluate these adjustments in milk prediction based on predicted first-limiting ME or MP by the 2001 Dairy NRC and Cornell Net Carbohydrate and Protein System models. The analysis of first-limiting ME or MP milk production without adjustments for BCS changes indicated that the predictions of both models were consistent (r(2) of the regression between observed and model-predicted values of 0.90 and 0.85), had mean biases different from zero (12.3 and 5.34%), and had moderate but different roots of mean square errors of prediction (5.42 and 4.77 kg/d) for the 2001 NRC model and the Cornell Net Carbohydrate and Protein System model, respectively. The adjustment of first-limiting ME- or MP-allowable milk to BCS changes improved the precision and accuracy of both models. We further investigated 2 methods of adjustment; the first method used only the first and last BCS values, whereas the second method used the mean of weekly BCS values to adjust ME- and MP-allowable milk production. The adjustment to BCS changes based on first and last BCS values was more accurate than the adjustment to BCS based on the mean of all BCS values, suggesting that adjusting milk production for mean weekly variations in BCS added more variability to model-predicted milk production. We concluded that both models adequately predicted the first-limiting ME- or MP-allowable milk after adjusting for changes in BCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.