We report on rotating an optically trapped silica nanoparticle in vacuum by transferring spin angular momentum of light to the particle's mechanical angular momentum. At sufficiently low damping, realized at pressures below 10^{-5} mbar, we observe rotation frequencies of single 100 nm particles exceeding 1 GHz. We find that the steady-state rotation frequency scales linearly with the optical trapping power and inversely with pressure, consistent with theoretical considerations based on conservation of angular momentum. Rapidly changing the polarization of the trapping light allows us to extract the pressure-dependent response time of the particle's rotational degree of freedom.
We report the observation of many-body interaction effects for a homonuclear bosonic mixture in a three-dimensional optical lattice with variable state dependence along one axis. Near the superfluid-to-Mott insulator transition for one component, we find that the presence of a second component can reduce the apparent superfluid coherence, most significantly when the second component either experiences a strongly localizing lattice potential or none at all. We examine this effect by varying the relative populations and lattice depths, and discuss the observed behavior in view of recent proposals for atomic-disorder and polaron-induced localization.
We experimentally realize cavity cooling of all three translational degrees of motion of a levitated nanoparticle in vacuum. The particle is trapped by a cavity-independent optical tweezer and coherently scatters tweezer light into the blue detuned cavity mode. For vacuum pressures around 10 −5 mbar, minimal temperatures along the cavity axis in the millikelvin regime are observed. Simultaneously, the center-of-mass (c.m.) motion along the other two spatial directions is cooled to minimal temperatures of a few hundred millikelvin. Measuring temperatures and damping rates as the pressure is varied, we find that the cooling efficiencies depend on the particle position within the intracavity standing wave. This data and the behavior of the c.m. temperatures as functions of cavity detuning and tweezer power are consistent with a theoretical analysis of the experiment. Experimental limits and opportunities of our approach are outlined.
We develop a theory for cavity cooling of the center-of-mass motion of a levitated nanoparticle through coherent scattering into an optical cavity. We analytically determine the full coupled Hamiltonian for the nanoparticle, cavity, and free electromagnetic field. By tracing out the latter, we obtain a Master Equation for the cavity and the center of mass motion, where the decoherence rates ascribed to recoil heating, gas pressure, and trap displacement noise are calculated explicitly. Then, we benchmark our model by reproducing published experimental results for three-dimensional cooling. Finally, we use our model to demonstrate the possibility of ground-state cooling along each of the three motional axes. Our work illustrates the potential of cavity-assisted coherent scattering to reach the quantum regime of levitated nanomechanics.
Miniaturized mechanical sensors rely on resonant operation schemes, unsuited to detect static forces. We demonstrate a nanomechanical sensor for static forces based on an optically trapped nanoparticle in vacuum. Our technique relies on an off-resonant interaction of the particle with a weak static force, and a resonant readout of the displacement caused by this interaction. We demonstrate a sensitivity of 10 aN to static gravitational and electric forces. Our work provides a tool for the closer investigation of short-range forces, and marks an important step towards the realization of matter-wave interferometry with macroscopic objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.