In this work the increase of the tensile shear strength by means of microstructuring of the metallic part for ultrasonic vibration assisted joining of hybrid compounds is presented. The aluminum alloy EN AW-5083 and a carbon fibre-reinforced plastic (CFRP) from Bond Laminates are used as a material combination. A suitable method is electrochemical processing (ECM). The microstructuring is carried out with continuous electrolyte free jet machining (Jet-ECM): Characteristic of this technology is the restriction of the electric current to a limited area of the electrolyte jet. After describing the materials and sample geometry used, the Jet-ECM technology and the ultrasonic vibration assisted joining process are explained. The strength of the joint is assessed by means of a tensile shear test. The determined results of the tensile shear strength for hybrid connections between microstructured aluminum sheets and CFRP are compared with those of unstructured aluminum sheets. Furthermore, the influence of the microstructure on the tensile shear strength achieved is discussed using metallographic cross-sections of the joining area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.