We derive a-posteriori error estimates for control-constrained, linear-quadratic optimal control problems. The error is measured in a norm which is motivated by the objective. Our abstract error estimator is separated into three contributions: the error in the variational inequality (i.e., in the optimality condition for the control) and the errors in the state and adjoint equation. Hence, one can use well-established estimators for the differential equations. We show that the abstract error estimator is reliable and efficient if the utilised estimators for the differential equations have these properties. We apply the error estimator to two distributed optimal control problems with distributed and boundary observation, respectively. Numerical examples exhibit a good error reduction if we use the local error contributions for an adaptive mesh refinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.