The tumor microenvironment (TME) is the source of important cues that govern epithelial-to-mesenchymal transition (EMT) and facilitate the acquisition of aggressive traits by cancer cells. It is now recognized that EMT is not a binary program, and cancer cells rarely switch to a fully mesenchymal phenotype. Rather, cancer cells exist in multiple hybrid epithelial/mesenchymal (E/M) states responsible for cell population heterogeneity, which is advantageous for the ever-changing environment during tumor development and metastasis. How are these intermediate states generated and maintained is not fully understood. Here, we show that direct interaction between small cell lung carcinoma cells and lung fibroblasts induces a hybrid EMT phenotype in cancer cells in which several mesenchymal genes involved in receptor interaction with the extracellular matrix (ECM) and ECM remodeling are upregulated while epithelial genes such as E-cadherin remain unchanged or slightly increase. We also demonstrate that several core EMT-regulating transcription factors (EMT-TFs) are upregulated in cancer cells during direct contact with fibroblasts, as is Yes-associated protein (YAP1), a major regulator of the Hippo pathway. Further, we show that these changes are transient and reverse to the initial state once the interaction is disrupted. Altogether, our results provide evidence that tumor cells’ direct contact with the fibroblasts in the TME initiates a signaling cascade responsible for hybrid E/M states of cancer cells. These hybrid states are maintained during the interaction and possibly contribute to therapy resistance and immune evasion, while interference with direct contact will result in slow recovery and switch to the initial states.
Metastasis consists of sequential steps initiated by cancer cells invading from the primary tumor site into neighboring tissues, followed by entry into the circulatory system and completed by extravasation and growth in distal organs where secondary tumors are formed. Circulating tumor cells, thus, encounter and adapt to multiple environmental changes during their transition from the primary to the secondary tumor sites. Epithelial–to–mesenchymal transition (EMT) is a developmental program that consists of loss of epithelial features concomitant with acquisition of mesenchymal features. Activation of EMT in cancer facilitates acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal phenotypes, confers survival advantages for cancer cells in the constantly changing environment. Therefore, understanding the molecular mechanisms regulating intermediate phenotypic states along the E–M spectrum is critical. Core EMT transcription factors (EMT–TFs), ZEB, SNAI and TWIST families, play an important role in EMT and its plasticity. In the present study we characterize FLASH as a regulator of EMP and multiple EMT–TFs. We demonstrate that loss of FLASH gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGF β, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. We demonstrate that FLASH is regulating expression of multiple cell junction proteins with an established role in cancer progression and that its role in EMT is independent of its histone biogenesis role. Further, we show that FLASH expression in cancer lines is inversely correlated with the epithelial score, consistent with its function as a repressor of the epithelial phenotype. Nonetheless, activation of a distinct set of mesenchymal markers concomitant with epithelial markers reveals the complex role of FLASH in EMT and indicates that intermediate E/M states could arise from opposing control by FLASH on different families of EMT–TFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.