IntroductionAchieving optimal diabetes control requires several daily self-management behaviours, especially adherence to medication. Evidence supports the use of text messages to support adherence, but there remains much opportunity to improve their effectiveness. One key limitation is that message content has been generic. By contrast, reinforcement learning is a machine learning method that can be used to identify individuals’ patterns of responsiveness by observing their response to cues and then optimising them accordingly. Despite its demonstrated benefits outside of healthcare, its application to tailoring communication for patients has received limited attention. The objective of this trial is to test the impact of a reinforcement learning-based text messaging programme on adherence to medication for patients with type 2 diabetes.Methods and analysisIn the REinforcement learning to Improve Non-adherence For diabetes treatments by Optimising Response and Customising Engagement (REINFORCE) trial, we are randomising 60 patients with suboptimal diabetes control treated with oral diabetes medications to receive a reinforcement learning intervention or control. Subjects in both arms will receive electronic pill bottles to use, and those in the intervention arm will receive up to daily text messages. The messages will be individually adapted using a reinforcement learning prediction algorithm based on daily adherence measurements from the pill bottles. The trial’s primary outcome is average adherence to medication over the 6-month follow-up period. Secondary outcomes include diabetes control, measured by glycated haemoglobin A1c, and self-reported adherence. In sum, the REINFORCE trial will evaluate the effect of personalising the framing of text messages for patients to support medication adherence and provide insight into how this could be adapted at scale to improve other self-management interventions.Ethics and disseminationThis study was approved by the Mass General Brigham Institutional Review Board (IRB) (USA). Findings will be disseminated through peer-reviewed journals, clinicaltrials.gov reporting and conferences.Trial registration numberClinicaltrials.gov (NCT04473326).
Background Individuals with diabetes need regular support to help them manage their diabetes on their own, ideally delivered via mechanisms that they already use, such as their mobile phones. One reason for the modest effectiveness of prior technology-based interventions may be that the patient perspective has been insufficiently incorporated. Objective This study aims to understand patients’ preferences for mobile health (mHealth) technology and how that technology can be integrated into patients’ routines, especially with regard to medication use. Methods We conducted semistructured qualitative individual interviews with patients with type 2 diabetes from an urban health care system to elicit and explore their perspectives on diabetes medication–taking behaviors, daily patterns of using mobile technology, use of mHealth technology for diabetes care, acceptability of text messages to support medication adherence, and preferred framing of information within text messages to support diabetes care. The interviews were digitally recorded and transcribed. The data were analyzed using codes developed by the study team to generate themes, with representative quotations selected as illustrations. Results We conducted interviews with 20 participants, of whom 12 (60%) were female and 9 (45%) were White; in addition, the participants’ mean glycated hemoglobin A1c control was 7.8 (SD 1.1). Overall, 5 key themes were identified: patients try to incorporate cues into their routines to help them with consistent medication taking; many patients leverage some form of technology as a cue to support adherence to medication taking and diabetes self-management behaviors; patients value simplicity and integration of technology solutions used for diabetes care, managing medications, and communicating with health care providers; some patients express reluctance to rely on mobile technology for these diabetes care behaviors; and patients believe they prefer positively framed communication, but communication preferences are highly individualized. Conclusions The participants expressed some hesitation about using mobile technology in supporting diabetes self-management but have largely incorporated it or are open to incorporating it as a cue to make medication taking more automatic and less burdensome. When using technology to support diabetes self-management, participants exhibited individualized preferences, but overall, they preferred simple and positively framed communication. mHealth interventions may be improved by focusing on integrating them easily into daily routines and increasing the customization of content.
Background Gaps between rational thought and actual decisions are increasingly recognized as a reason why people make suboptimal choices in states of heightened emotion, such as stress. These observations may help explain why high-risk medications continue to be prescribed to acutely ill hospitalized older adults despite widely accepted recommendations against these practices. Role playing and other efforts, such as simulation training, have demonstrated benefits to help people avoid decisional gaps but have not been tested to reduce overprescribing of high-risk medications. Objective This study aims to evaluate the impact of a simulation-based training program designed to address decisional gaps on prescribing of high-risk medications compared with control. Methods In this 2-arm pragmatic trial, we are randomizing at least 36 first-year medical resident physicians (ie, interns) who provide care on inpatient general medicine services at a large academic medical center to either intervention (simulation-based training) or control (online educational training). The intervention comprises a 40-minute immersive individual simulation training consisting of a reality-based patient care scenario in a simulated environment at the beginning of their inpatient service rotation. The simulation focuses on 3 types of high-risk medications, including benzodiazepines, antipsychotics, and sedative hypnotics (Z-drugs), in older adults, and is specifically designed to help the physicians identify their reactions and prescribing decisions in stressful situations that are common in the inpatient setting. The simulation scenario is followed by a semistructured debriefing with an expert facilitator. The trial’s primary outcome is the number of medication doses for any of the high-risk medications prescribed by the interns to patients aged 65 years or older who were not taking one of the medications upon admission. Secondary outcomes include prescribing by all providers on the care team, being discharged on 1 of the medications, and prescribing of related medications (eg, melatonin, trazodone), or the medications of interest for the control intervention. These outcomes will be measured using electronic health record data. Results Recruitment of interns began on March 29, 2021. Recruitment for the trial ended in Q42021, with follow-up completed by Q12022. Conclusions This trial will evaluate the impact of a simulation-based training program designed using behavioral science principles on prescribing of high-risk medications by junior physicians. If the intervention is shown to be effective, this approach could potentially be reproducible by others and for a broader set of behaviors. Trial Registration ClinicalTrials.gov NCT04668248; https://clinicaltrials.gov/ct2/show/NCT04668248 International Registered Report Identifier (IRRID) PRR1-10.2196/31464
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.