We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.
ObjectiveTo assess a new adenovirus-based immunotherapy as a novel treatment approach to chronic hepatitis B (CHB).MethodsTG1050 is a non-replicative adenovirus serotype 5 encoding a unique large fusion protein composed of a truncated HBV Core, a modified HBV Polymerase and two HBV Envelope domains. We used a recently described HBV-persistent mouse model based on a recombinant adenovirus-associated virus encoding an over length genome of HBV that induces the chronic production of HBsAg, HBeAg and infectious HBV particles to assess the ability of TG1050 to induce functional T cells in face of a chronic status.ResultsIn in vitro studies, TG1050 was shown to express the expected large polyprotein together with a dominant, smaller by-product. Following a single administration in mice, TG1050 induced robust, multispecific and long-lasting HBV-specific T cells detectable up to 1 year post-injection. These cells target all three encoded immunogens and display bifunctionality (ie, capacity to produce both interferon γ and tumour necrosis factor α as well as cytolytic functions). In addition, control of circulating levels of HBV DNA and HBsAg was observed while alanine aminotransferase levels remain in the normal range.ConclusionsInjection of TG1050 induced both splenic and intrahepatic functional T cells producing cytokines and displaying cytolytic activity in HBV-naïve and HBV-persistent mouse models together with significant reduction of circulating viral parameters. These results warrant clinical evaluation of TG1050 in the treatment of CHB.
Persistence of an immunosuppressive state plays a role in septic patient morbidity and late mortality. Both innate and adaptive pathways are impaired, pointing toward the need for immune interventions targeting both arms of the immune system. We developed a virotherapy using the nonpropagative modified vaccinia virus Ankara (MVA), which harbors the intrinsic capacity to stimulate innate immunity, to deliver IL-7, a potent activator of adaptive immunity. The rMVAhuman IL-7 (hIL-7)Fc encoding the hIL-7 fused to the human IgG2-Fc was engineered and shown to express a dimeric, glycosylated, and biologically active cytokine. Following a single i.v. injection in naive mice, the MVAhIL-7Fc increased the number of total and activated B, T, and NK cells but also myeloid subpopulations (Ly6C high , Ly6C int , and Ly6C neg cells) in both lung and spleen. It triggered differentiation of T cells in central memory, effector memory, and acute effector phenotypes and enhanced polyfunctionality of T cells, notably the number of IFN-gproducing cells. The MVA vector contributed significantly to immune cell activation, particularly of NK cells. The MVAhIL-7Fc conferred a significant survival advantage in the cecal ligation and puncture (CLP) and Candida albicans sepsis models. It significantly increased cell numbers and activation in both spleen and lung of CLP mice. Comparatively, in naive and CLP mice, the rhIL-7Fc soluble counterpart overall induced less vigorous, shorter lasting, and narrower immune activities than did the MVAhIL-7Fc and favored TNF-aproducing cells. The MVAhIL-7Fc represents a novel class of immunotherapeutic with clinical potential for treatment of septic patients.
This combination of immunotherapies strongly increased at the injection sites the percentage of infiltrating natural killer (NK) cells and plasmacytoid dendritic cells (pDCs), cell types which can modulate innate and adaptive immune responses. IMPORTANCEVirus-based cancer vaccines offer a good alternative to the treatment of cancer but could be improved. Starting from a screening approach, we have identified and characterized an unexplored biological molecule with immunomodulatory characteristics which augments the efficacy of an MVA-based immunotherapeutic agent. The immune modulator consists of the purified dsRNA genome isolated from a commercially used yeast strain, NAB2, mixed with a cationic lipid, Lipofectin. NAB2-Lipofectin stimulates the immune system via TLR3 and MDA-5. When it was injected at the MVA vaccination site, the immune modulator increased survival in a preclinical tumor model. We could demonstrate that NAB2-Lipofectin augments the MVA-induced infiltration of natural killer and plasmacytoid dendritic cells. We suggest indirect mechanisms of activation of these cell types by the influence of NAB2-Lipofectin on innate and adaptive immunity. Detailed analysis of cell migration at the vaccine injection site and the appropriate choice of an immune modulator should be considered to achieve the rational improvement of virus vectorbased vaccination by immune modulators.
The sequences encoding the core proteins p55, p25, and p18 of the human immunodeficiency virus (HIV-1) have been inserted into the vaccinia virus genome. Infection of cultured cells with the live recombinant viruses led to the expression of proteins that were recognized by sera from HIV-seropositive individuals. Immunization of mice with the recombinant virus expressing the HIV p25 protein and the p55 precursor yielded high levels of antibodies directed against the corresponding HIV antigens. The data obtained are discussed in terms of the possible use of these live recombinant viruses in the development of a strategy toward an AIDS vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.