Proteins show drastic discrepancies in their contribution to the collection of self-peptides that shape the repertoire of CD8 T cells (MHC I self-immunopeptidome). To decipher why selected proteins are the foremost sources of MHC I-associated self-peptides, we chose to study SIMP/STT3B because this protein generates very high amounts of MHC I-associated peptides in mice and humans. We show that the endoplasmic reticulum (ER)-associated degradation pathway and MHC I processing intersect at SIMP/STT3B. Relevant key features of SIMP/STT3B are its lysine-rich region, its propensity to misfold and its location in the ER membrane in close proximity to the immunoproteasome. Moreover, we show that coupling to SIMP/STT3B can be used to foster MHC I presentation of a selected peptide, here the ovalbumin peptide SIINFEKL. These data yield novel insights into relations between the cell proteome and the MHC I immunopeptidome. They suggest that the contribution of a given protein to the MHC I immunopeptidome results from the interplay of at least three factors: the presence of degrons (degradation signals), the tendency of the protein to misfold and its subcellular localization. Furthermore, they indicate that substrates of the ER-associated degradation pathway may have a prominent imprint on the MHC I self-immunopeptidome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.