Summary1. The capture of birds using mist nets is a widely utilized technique for monitoring avian populations. While the method is assumed to be safe, very few studies have addressed how frequently injuries and mortalities occur and the associated risks have not been formally evaluated. 2. We quantified the rates of mortality and injury at 22 banding organizations in the United States and Canada and used capture data from five organizations to determine what kinds of incidents occur most frequently. Analyses focused on passerines and near-passerines, but other groups were included. We evaluated whether body mass, age, sex, mist net mesh size, month and time of day or frequency of capture are related to the risk or type of incident. We also compared the recapture histories over time between birds that were injured and those that were never injured for 16 species. 3. The average rate of injury was 0AE59%, while mortality was 0AE23%. Birds captured frequently were less at risk to incident. Body mass was positively correlated with incident and larger birds were at greater risk to predation, leg injuries, broken legs, internal bleeding and cuts, while smaller birds were more prone to stress, tangling-related injuries and wing strain. Rates of incident varied among species, with some at greater risk than others. We found no evidence for increased mortality over time of injured birds compared with uninjured birds. 4. We provide the first comprehensive evaluation of the risks associated with mist netting. Our results indicate that (1) injury and mortality rates below one percent can be achieved during mist netting and (2) injured birds are likely to survive in comparable numbers to uninjured birds after release. While overall risks are low, this study identified vulnerable species and traits that may increase a bird's susceptibility to incident that should be considered in banding protocols aimed at minimizing injury and mortality. Projects using mist nets should monitor their performance and compare their results to those of other organizations.
The migratory biology and connectivity of passerines remains poorly known, even for those that move primarily within the temperate zone. We used light-level geolocators to describe the migratory geography of a North American temperate migrant passerine. From February to March of 2010, we attached geolocator tags to 33 Golden-crowned Sparrows (Zonotrichia atricapilla) wintering on the central coast of California, USA, and recovered four tags the following winter (October to December 2010). We used a Bayesian state-space model to estimate the most likely breeding locations. All four birds spent the breeding season on the coast of the Gulf of Alaska. These locations spanned approximately 1200 kilometers, and none of the individuals bred in the same location. Speed of migration was nearly twice as fast during spring than fall. The return rate of birds tagged the previous season (33%) was similar to that of control birds (39%), but comparing return rates was complicated because 7 of 11 returning birds had lost their tags. For birds that we recaptured before spring migration, we found no significant difference in mass change between tagged and control birds. Our results provide insight into the previously-unknown breeding provenance of a wintering population of Golden-crowned Sparrows and provide more evidence of the contributions that light-level geolocation can make to our understanding of the migratory geography of small passerines.
Monitoring responses by birds to restoration of riparian vegetation is relatively cost-effective, but in most assessments species-specific abundances, not demography, are monitored. Data on birds collected during the nonbreeding season are particularly lacking. We captured birds in mist nets and resighted banded birds to estimate species richness and diversity, abundance, demographic indexes, and site-level persistence of permanent-resident and overwintering migrants in remnant and restored riparian sites in California. Species richness in riparian remnants was significantly higher than in restored sites because abundances of uncommon permanent residents were greater in remnants. Species richness of overwintering migrants did not differ between remnants and restored sites. Responses among overwintering migrants (but not permanent residents) to remnant and restored riparian sites differed. Capture rates were higher in remnant or restored riparian sites for 7 of 10 overwintering migratory species. For Lincoln's Sparrows (Melospiza lincolnii) and White-crowned Sparrows (Zonotrichia leucophrys) proportions of older birds were significantly higher in remnants, even though capture rates of these species were higher in restored sites. Overwinter persistence of 4 migrant species was significantly higher in remnant than in restored sites. A higher proportion of Hermit Thrushes (Catharus guttatus, 56.3%), older Fox Sparrows (Passerella iliaca, 57.1%), Lincoln's Sparrows (59.7%), and White-crowned Sparrows (67.8%) persisted in remnants than restored sites. Our results suggest restored riparian sites provide habitat for a wide variety of species in comparable abundances and diversity as occurs in remnant riparian sites. Our demographic and persistence data showed that remnants supported some species and age classes to a greater extent than restored sites.
Effective conservation of short-distance migrants requires an understanding of intraspecific variation in migratory patterns across small spatial scales. Until the advent of ultra-light geolocation devices, our knowledge of the migratory connectivity of songbirds was limited. For the Hermit Thrush (Catharus guttatus), subspecies delineations and connectivity patterns have been unclear in the portion of their breeding range in western North America from southeastern Alaska to northwestern Washington, where individuals wintering in the San Francisco Bay Area of California purportedly breed. To determine breeding locations and migratory timing of the Bay Area’s wintering Hermit Thrushes, we deployed geolocators at sites to the north and south of the San Francisco Bay. We compared results from these two regions to one another and to connectivity patterns suggested by subspecies definitions. We collected morphometrics to identify regional differences. Hermit Thrushes that wintered in the North Bay had a wider and more southerly breeding distribution from the British Columbia coast to northwestern Washington, whereas South Bay thrushes migrated to southeastern Alaska and the British Columbia coast. In general, North Bay thrushes departed wintering grounds and arrived on breeding grounds earlier than South Bay thrushes, but we cannot eliminate sex as a factor in these differences. Regional morphology differed only in bill length. Intraspecific isolation in glacial refugia during the Late Pleistocene may explain these fine-scale geographic variations in migration patterns and morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.