The molecular basis for chloride and stilbenedisulfonate interaction with band 3 was investigated by measuring the kinetics of stilbenedisulfonate release from its complex with the transporter. We found that 150 mM NaCl accelerated the rate of release of DBDS (4,4'-dibenzamidostilbene-2,2'-dibenzamidostilbene-2,2'-disu lfonate) and H2DIDS (4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate) by more than 10-fold at constant ionic strength. The acceleration effect saturated as a function of chloride concentration. This is an indication of specific binding within a ternary complex involving stilbenedisulfonate, chloride, and band 3. To see if stilbenedisulfonates block an access channel to the transport site, we studied the effect of rapidly mixing DBDS-saturated resealed ghosts with chloride at constant ionic strength and osmotic pressure. Once again, we observe a large, uniform acceleration in the rate of DBDS release. These findings are not consistent with molecular models where stilbenedisulfonates are proposed to block access to a deeper transport site. We suggest that the intramonomeric stilbenedisulfonate site is not located on the chloride transport pathway but rather interacts with the transport site though heterotropic allosteric site-site interactions. On the basis of our kinetic evidence for ternary complex formation and on transport inhibition evidence in the literature showing a linear dependence of KI-app on substrate, we suggest that stilbenedisulfonates are linear mixed-type inhibitors of band 3 anion exchange, not pure competitive inhibitors as has been assumed on the basis of analysis of transport inhibition data alone.
Glutamate 681 is thought to be located within the transport channel of band 3 (AE1, the chloride/bicarbonate exchanger), where it acts as a proton donor for the anion/proton cotransport function. Here we show that neutralization of the negative charge on glutamate 681 by chemically modifying band 3 with Woodward's reagent K plus sodium borohydride (i.e., the modification process) exposes a cryptic, conformationally active chloride-binding site which functions to modulate allosterically the conformational state of the band 3 dimer. Chloride binding was determined by measuring the effect of increasing chloride concentration on the rate of DBDS (4,4'-dibenzamido-2,2'-stilbenedisulfonate) release from band 3 using a stopped-flow fluorescence kinetic inhibitor replacement assay with DIDS (4,4'-diisothiocyanato-2,2'-stilbenedisulfonate) as the replacing inhibitor. The time course for DBDS release from unmodified, control band 3 was monophasic and exponential. Chloride binding to the transport site accelerated the rate of DBDS release, with the observed rate constant showing a hyperbolic dependence on chloride concentration, while the total change in reaction fluorescence remained constant. After modification of glutamate 681, DBDS release was monophasic in the absence of chloride, but the rapid addition of chloride at constant ionic strength induced a doubling in the fluorescence quantum yield for the bound DBDS molecules. This was associated with the development of 50:50 biphasic kinetics for DBDS release. Such changes were independent of the degree of modification of the band 3 subunit population between the 66% and 91% levels. Titration of the increase in total reaction fluorescence gave an apparent chloride binding K(d) of between 7 and 10 mM, which is 25-40-fold higher in affinity than chloride binding to the transport site. The dependence of the kinetic constants for both phases of the DBDS release reaction on chloride concentration was nonhyperbolic, which contrasts with unmodified band 3, and is indicative of the presence of two classes of chloride-binding sites on the modified transporter. We have also found that the fraction of subunits capable of binding DBDS reversibly, or DIDS covalently, decreased nonlinearly in the absence of chloride as the level of modification of the band 3 subunit population increased. In contrast, the same DBDS binding correlation plot showed a maximum in the presence of saturating chloride. The observation of such nonlinear correlation plots is consistent with a noncooperative dimer model for the modification process, where each dimeric species must possess different properties with respect to stilbenedisulfonate binding capacity and with respect to the spectral-kinetic response of bound stilbenedisulfonate molecules to the addition of chloride. Within the context of this model, the fractions of the three molecular dimeric species (i.e., the unmodified dimer, the dimer with one subunit modified, and the fully modified band 3 dimer) are calculated as a function of the level of modif...
The mechanism of dissociation of the stable dimer of band 3 was investigated during the incubation of isolated erythrocyte membranes or resealed ghosts at 37 degrees C. The kinetics of changes in the structural and functional integrity of the membrane domain of band 3 (MDB3) were measured and correlated with the change in the Stokes radius of band 3. MDB3 integrity was determined as follows: (1) by measuring the fluorescence emission spectrum of 4, 4'-di-isothiocyanostilbene-2,2'-disulphonate (DIDS) bound covalently to MDB3; (2) by measuring the number of DIDS covalent binding sites present after incubation of unlabelled resealed ghosts; and (3) by measuring the anion transport V(max) by using the same resealed ghosts. Incubation of membranes at 37 degrees C caused the dissociation of band 3 dimers to monomers but only after a lag period lasting approx. 50 h. The observation of such a lag implies that dissociation involves a sequence of molecular events beginning with some type of initial process. We have discovered that this initial process involves a conformation change in MDB3. There was a shift in the fluorescence spectrum for DIDS-labelled band 3 and a decrease in the DIDS binding capacity and transport activity of the unlabelled protein. Incubation of membranes at 4 degrees C inhibited the conformational change in MDB3 and the dissociation of dimers. Furthermore, no conformational change in MDB3 was observed when erythrocytes were incubated at 37 degrees C. We suggest that MDB3 unfolding is the molecular event responsible for the subsequent dissociation of stable dimers of band 3 to monomers during the incubation of erythrocyte membranes at 37 degrees C. The monomers so generated are either not functional in anion exchange or they have an attenuated functionality. The absence of a conformational change for band 3 in erythrocytes might imply that haemolysis perturbs the membrane structure and somehow predisposes band 3 to the conformational change that occurs during incubation at 37 degrees C.
We have investigated the oligomeric state of the membrane domain of band 3 (MDB3) in non-ionic detergent solution using Sepharose CL-4B gel filtration chromatography to study the hydrodynamic properties of the protein as a function of its concentration. The studies were performed in a C12E9 (polyoxyethylene-9-lauryl ether) buffer containing phosphatidylcholine and sodium chloride, which significantly slow a dilution-induced band 3 conformational change, and an associated aggregation process. Under these conditions native MDB3 eluted predominantly as a single Gaussian peak with a Stokes radius of 76 +/- 14 A, at all protein concentrations studies between 0.2 and 12 microM. This value agrees with the calculated Stokes radius (74 A) determined from the crystal structure of the MDB3 dimer. The Stokes radius of the MDB3 monomer was obtained experimentally by treating native MDB3 with 0.5% SDS, and exchanging the SDS for C12E9 on the Sepharose column. SDS-treated MDB3 showed two peaks whose ratio was strongly dependent on applied protein concentration. The peak representing the largest material had a Stokes radius of 69.7 +/- 14 A, which is essentially the same as the native MDB3 dimer. The peak representing the smaller material had a Stokes radius of 36 +/- 9 A, and was assigned as the MDB3 monomer in C12E9. Evidence is discussed which indicates that the C12E9 monomer specifically self-associates to form a functional MDB3 dimer. We conclude that native MDB3 exists as a stable dimer in mixed micellar solutions composed of C12E9 and phosphatidylcholine, and that the dimer can be dissociated to monomers only by denaturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.