The number of drugs reported to interact with warfarin continues to expand. While most reports are of poor quality and present potentially misleading conclusions, the consistency of reports of interactions with azole antibiotics, macrolides, quinolones, nonsteroidal anti-inflammatory drugs, including selective cyclooxygenase-2 inhibitors, selective serotonin reuptake inhibitors, omeprazole, lipid-lowering agents, amiodarone, and fluorouracil, suggests that coadministration with warfarin should be avoided or closely monitored. More systematic study of warfarin drug interactions in patients is urgently needed.
Research W arfarin therapy is strongly recommended for the prevention of stroke in moderate-and high-risk patients with atrial fibrillation.1-10 However, it is associated with a risk of major bleeding. The actual rate of serious bleeding in clinical practice varies widely and depends on the patient's risk category and the quality of monitoring of the international normalized ratio.11-14 Studies in clinical settings have shown that warfarin's effectiveness is similar to that measured in randomized trials, but its utilization in clinical practice is lower than expected.
15-25Acetylsalicylic acid is safer than warfarin, but less effective.
Background: Idiopathic pulmonary fibrosis (IPF) is a treatment resistant disease with poor prognosis. Numerous compounds have been demonstrated to efficiently prevent pulmonary fibrosis (PF) in animal models but only a few were successful when given to animals with established fibrosis. Major concerns of current PF models are spontaneous resolution and high variability of fibrosis, and the lack of assessment methods that can allow to monitor the effect of drugs in individual animals over time. We used a model of experimental PF in rats and compare parameters obtained in living animals with conventional assessment tools that require removal of the lungs.
The activation of signalling pathways and nuclear translocation of signalling molecules downstream of IL-13 and TGF-beta1 further support the central role of these molecules in the pathology and dysfunction in animal models of asthma. Activation of signalling pathways downstream from IL-13 and TGF-beta1 may be more relevant in disease progression than elevations in airway inflammation alone.
Emphysema is a major health problem and novel drugs are needed. Animal disease models are pivotal in their development, but the validity and sensitivity of current tools for the evaluation of drug efficacy is limited. The usefulness of micro computed tomography (CT) as an innovative tool to assess emphysema in a mouse model was investigated.Serial CT scans were performed in bi-weekly intervals in Smad3 knockout (KO) mice, which spontaneously develop airspace enlargement. Lung density was quantified in two-and threedimensional images and correlated to mean linear intercept and lung compliance.CT scans of Smad3 KO lungs revealed a significant decrease in lung density at age 8 weeks and a further progression at age 14 weeks with respect to age-matched wild-type (WT) animals. Emphysema could be reliably assessed with both the two-and three-dimensional approach, but the three-dimensional approach was superior, due to normalisation to lung volumes and less variability. Lung compliance by week 14 was 0.053¡0.005 and 0.034¡0.002% of maximum volume?cmH 2 O -1 for KO and WT mice, respectively, reflecting significant physiologically relevant emphysema. Small animal computed tomography imaging and density quantification in a reconstructed three-dimensional image is a useful tool for quantifying emphysematous changes in an animal disease model. It adds significant information to conventional assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.