International commercial airline pilots may experience heightened fatigue due to irregular sleep schedules, long duty days, night flying, and multiple time zone changes. Importantly, current commercial airline flight and duty time regulations are based on work/rest factors and not sleep/wake factors. Consequently, the primary aim of the current study was to investigate pilots' amount of sleep, subjective fatigue, and sustained attention before and after international flights. A secondary aim was to determine whether prior sleep and/or duty history predicted pilots' subjective fatigue and sustained attention during the international flights. Nineteen pilots (ten captains, nine first officers; mean age: 47.42+/-7.52 years) participated. Pilots wore wrist activity monitors and completed sleep and duty diaries during a return pattern from Australia to Europe via Asia. The pattern included four flights: Australia-Asia, Asia-Europe, Europe-Asia, and Asia-Australia. Before and after each flight, pilots completed a 5 min PalmPilot-based psychomotor vigilance task (PVT) and self-rated their level of fatigue using the Samn-Perelli Fatigue Checklist. Separate repeated-measures ANOVAs were used to determine the impact of stage of flight and flight sector on the pilots' sleep in the prior 24 h, self-rated fatigue, and PVT mean response speed. Linear mixed model regression analyses were conducted to examine the impact of sleep in the prior 24 h, prior wake, duty length, and flight sector on pilots' self-rated fatigue and sustained attention before and after the international flights. A significant main effect of stage of flight was found for sleep in the prior 24 h, self-rated fatigue, and mean response speed (all p < 0.05). In addition, a significant main effect of flight sector on self-rated fatigue was found (p < .01). The interaction between flight sector and stage of flight was significant for sleep in the prior 24 h and self-rated fatigue (both p < .05). Linear mixed model analyses indicated that sleep in the prior 24 h was a significant predictor of self-rated fatigue and mean response speed after the international flight sectors. Flight sector was also a significant predictor of self-rated fatigue. These findings highlight the importance of sleep and fatigue countermeasures during international patterns. Furthermore, in order to minimize the risk of fatigue, the sleep obtained by pilots should be taken into account in the development of flight and duty time regulations.
Long-haul airline pilots often experience elevated levels of fatigue due to extended work hours and circadian misalignment of sleep and wake periods. During long-haul trips, pilots are typically given 1-3 d off between flights (i.e., layover) to recover from, and prepare for, duty. Anecdotally, some pilots prefer long layovers because it maximizes the time available for recovery and preparation, but others prefer short layovers because it minimizes both the length of the trip, and the degree to which the body clock changes from "home time" to the layover time zone. The aim of this study was to examine the impact of layover length on the sleep, subjective fatigue levels, and capacity to sustain attention of long-haul pilots. Participants were 19 male pilots (10 Captains, 9 First Officers) working for an international airline. Data were collected during an 11- or 12-d international trip. The trips involved (i) 4 d at home prior to the trip; (ii) an eastward flight of 13.5 h across seven time zones; (iii) a layover of either 39 h (i.e., short, n = 9) or 62 h (i.e., long, n = 10); (iv) a return westward flight of 14.3 h across seven time zones; and (v) 4 d off at home after the trip. Sleep was recorded using a self-report sleep diary and wrist activity monitor; subjective fatigue level was measured using the Samn-Perelli Fatigue Checklist; and sustained attention was assessed using the psychomotor vigilance task for a personal digital assistant (PalmPVT). Mixed-model regression analyses were used to determine the effects of layover length (short, long) on the amount of sleep that pilots obtained during the trip, and on the pilots' subjective fatigue levels and capacity to sustain attention. There was no main effect of layover length on ground-based sleep or in-flight sleep, but pilots who had a short layover at the midpoint of their trip had higher subjective fatigue levels and poorer sustained attention than pilots who had a long layover. The results of this study indicate that a short layover during a long-haul trip does not substantially disrupt pilots' sleep, but it may result in elevated levels of fatigue during and after the trip. If short layovers are used, pilots should have a minimum of 4 d off to recover prior to their next long-haul trip.
Fatigue associated with shiftwork is a key contributor to human error in the workplace. One way to prevent fatigue-related errors from occurring is to identify fatigue in employees using fitness-for-duty measures. The Occupational Safety Performance Assessment Test (OSPAT), an unpredictable tracking task that measures hand-eye coordination, is currently being used as a fitnessfor-duty measure in a variety of industries, but has not yet been validated as a test sensitive to the effects of fatigue. Consequently, the aim of this study was to systematically examine the impact of sustained wakefulness and time-of-day on OSPAT performance. Twenty individuals (10 male, 10 female), aged between 18-25 yr (M=20.90, SD=2.29) participated in the study, which was conducted in Australia. The study had a repeated measures design, whereby participants completed the OSPAT and measures of sustained attention (i.e., the psychomotor vigilance task: PVT), and subjective alertness (i.e., the Visual Analog Scale: VAS) every 2 h during 24 h of sustained wakefulness, beginning at 07:00h. Results revealed that VAS ratings of alertness, PVT performance, and OSPAT performance declined significantly as hours of wakefulness increased during the night-time (all p<.01). Furthermore, a positive correlation between OSPAT and PVT performance was observed (r=0.40, p<.01). Overall, these findings suggest that OSPAT is sensitive to sustained wakefulness during the night-time, and builds the case for OSPAT being a suitable measure for determining fitness-for-duty in workplace environments.
For Australian pilots, short layovers (<40 h) are a feature of many international patterns. However, anecdotal reports suggest that flight crew members find patterns with short slips more fatiguing than those with a longer international layover, as they restrict the opportunity to obtain sufficient sleep. The current study aimed to determine whether pilots operating international patterns with short layovers have sufficient opportunity to recover prior to the inbound flight. Nineteen international pilots (ten captains, nine first officers) operating a direct return pattern from Australia to Los Angeles (LAX) with a short (n = 9) 9+/-0.8 h (mean+/-S.D) or long (n = 10) 62.2+/-0.9 h LAX layover wore an activity monitor and kept a sleep/duty diary during the pattern. Immediately before and after each flight, pilots completed a 5 min PalmPilot-based psychomotor vigilance task (Palm-PVT). Flights were of comparable duration outbound (3.5+/-0.6 h) and inbound (14.3+/-0.6 h) and timing. The amount of sleep obtained in-flight did not significantly vary as a function of layover length. However, pilots obtained significantly more sleep during the inbound (3.7+/-0.8 h) than the outbound flight (2.2+/-0.8 h). Pilots with the shorter layover obtained significantly less sleep in total during layover (14.0+/-2.7 h vs. 19.6+/-2.5), due to significantly fewer sleep periods (3.0+/-0.7 vs. 4.0+/-0.9). However, neither mean sleep duration nor the sleep obtained in the 24 h prior to the inbound flight significantly differed as a function of layover length. Response speed significantly varied across the pattern, and a significant interaction was also observed. For pilots with a short layover, response speed was significantly slower at the end of both the outbound and inbound flight, and prior to the inbound flight (i.e., at the end of layover), relative to response speed at the start of the pattern (pre-trip). Similarly, response speed for the longer layover was slower at the end of the outbound flight compared to pre-trip (approaching significance, p = 0.073). However, response speed at the beginning of the inbound flight was significantly faster than pre-trip and did not significantly differ from pre-trip at the end of the inbound flight. The data suggest that short slips (<40 h) do not allow pilots the opportunity to obtain sufficient sleep to reverse the effects of fatigue accumulated during the outbound flight. As a result, their response speed prior to the inbound flight is substantially slower than the response speed of flight crew with a longer layover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.