Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson's Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∼1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf. migration | ecological barrier | Gulf of Mexico | songbirds | weather D uring migration, animals encounter ecological barriers, inhospitable environmental features that prevent or impede movement due to increased risk of mortality from starvation, predation, collision, and severe environmental conditions (e.g., weather for aerial migrants, aquatic temperature or chemical gradients for aquatic migrants) (1-5). Because barriers can have important consequences on survival and future reproductive success (6), animals have evolved behavioral, morphological, and/or physiological means to safely negotiate them (7-9). Barriers can include large geographic features (e.g., large water bodies, deserts, mountains), inhospitable land cover types (e.g., agricultural "deserts"), anthropogenic structures (e.g., tall buildings, towers, dams, weirs), and unfavorable weather and aquatic conditions (e.g., droughts, storms, strong temperature gradients), although the extent to which any of these functions as a barrier to migration varies (4,5,(10)(11)(12).Approximately two thirds of all songbird species and millions of individuals breeding in eastern Canada and the United States encounter the Gulf of Mexico (GOM) while migrating to tropical or subtropical wintering grounds in the Caribbean, Mexico, and Central and South America (13). Unfavorable weather conditions combine...
Understanding drought from multiple perspectives is critical due to its complex interactions with crop production, especially in India. However, most studies only provide singular view of drought and lack the integration with specific crop phenology. In this study, four time series of monthly meteorological, hydrological, soil moisture, and vegetation droughts from 1981 to 2013 were reconstructed for the first time. The wheat growth season (from October to April) was particularly analyzed. In this study, not only the most severe and widespread droughts were identified, but their spatial-temporal distributions were also analyzed alone and concurrently. The relationship and evolutionary process among these four types of droughts were also quantified. The role that the Green Revolution played in drought evolution was also studied. Additionally, the trends of drought duration, frequency, extent, and severity were obtained. Finally, the relationship between crop yield anomalies and all four kinds of drought during the wheat growing season was established. These results provide the knowledge of the most influential drought type, conjunction, spatial-temporal distributions and variations for wheat production in India. This study demonstrates a novel approach to study drought from multiple views and integrate it with crop growth, thus providing valuable guidance for local drought mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.